350 research outputs found

    ๆฐ”ๅŠŸ้”ป็‚ผๅฏน้ซ˜่ก€ๅŽ‹ๆ‚ฃ่€…ไฝœ็”จ็š„็ ”็ฉถ่ฟ›ๅฑ•

    Get PDF
    2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Analysis on the epidemiology and community interventions of hypertension

    Get PDF
    2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    ้ซ˜่ก€ๅŽ‹็—…็š„ไธญๅŒปๅ‘็—…่ง‚

    Get PDF
    2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    ็คพๅŒบไธญๅนด้ซ˜่ก€ๅŽ‹ๆ‚ฃ่€…่ฎค็Ÿฅ่กŒไธบ็š„่ฐƒๆŸฅ็ ”็ฉถ

    Get PDF
    2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Band structure engineering in (Bi1-xSbx)2Te3 ternary topological insulators

    Full text link
    Three-dimensional (3D) topological insulators (TI) are novel quantum materials with insulating bulk and topologically protected metallic surfaces with Dirac-like band structure. The spin-helical Dirac surface states are expected to host exotic topological quantum effects and find applications in spintronics and quantum computation. The experimental realization of these ideas requires fabrication of versatile devices based on bulk-insulating TIs with tunable surface states. The main challenge facing the current TI materials exemplified by Bi2Se3 and Bi2Te3 is the significant bulk conduction, which remains unsolved despite extensive efforts involving nanostructuring, chemical doping and electrical gating. Here we report a novel approach for engineering the band structure of TIs by molecular beam epitaxy (MBE) growth of (Bi1-xSbx)2Te3 ternary compounds. Angle-resolved photoemission spectroscopy (ARPES) and transport measurements show that the topological surface states exist over the entire composition range of (Bi1-xSbx)2Te3 (x = 0 to 1), indicating the robustness of bulk Z2 topology. Most remarkably, the systematic band engineering leads to ideal TIs with truly insulating bulk and tunable surface state across the Dirac point that behave like one quarter of graphene. This work demonstrates a new route to achieving intrinsic quantum transport of the topological surface states and designing conceptually new TI devices with well-established semiconductor technology.Comment: Minor changes in title, text and figures. Supplementary information adde

    Optimal control of impulsive switched systems with minimum subsystem durations

    Get PDF
    This paper presents a new computational approach for solving optimal control problems governed by impulsive switched systems. Such systems consist of multiple subsystems operating in succession, with possible instantaneous state jumps occurring when the system switches from one subsystem to another. The control variables are the subsystem durations and a set of system parameters influencing the state jumps. In contrast with most other papers on the control of impulsive switched systems, we do not require every potential subsystem to be active during the time horizon (it may be optimal to delete certain subsystems, especially when the optimal number of switches is unknown). However, any active subsystem must be active for a minimum non-negligible duration of time. This restriction leads to a disjoint feasible region for the subsystem durations. The problem of choosing the subsystem durations and the system parameters to minimize a given cost function is a non-standard optimal control problem that cannot be solved using conventional techniques. By combining a time-scaling transformation and an exact penalty method, we develop a computational algorithm for solving this problem. We then demonstrate the effectiveness of this algorithm by considering a numerical example on the optimization of shrimp harvesting operations

    miR-198 Inhibits HIV-1 Gene Expression and Replication in Monocytes and Its Mechanism of Action Appears To Involve Repression of Cyclin T1

    Get PDF
    Cyclin T1 is a regulatory subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is also required for Tat transactivation of HIV-1 LTR-directed gene expression. Translation of Cyclin T1 mRNA has been shown to be repressed in human monocytes, and this repression is relieved when cells differentiate to macrophages. We identified miR-198 as a microRNA (miRNA) that is strongly down-regulated when monocytes are induced to differentiate. Ectopic expression of miR-198 in tissue culture cells reduced Cyclin T1 protein expression, and plasmid reporter assays verified miR-198 target sequences in the 3โ€ฒ untranslated region (3โ€ฒUTR) of Cyclin T1 mRNA. Cyclin T1 protein levels increased when an inhibitor of miR-198 was transfected into primary monocytes, and overexpression of miR-198 in primary monocytes repressed the normal up-regulation of Cyclin T1 during differentiation. Expression of an HIV-1 proviral plasmid and HIV-1 replication were repressed in a monocytic cell line upon overexpression of miR-198. Our data indicate that miR-198 functions to restrict HIV-1 replication in monocytes, and its mechanism of action appears to involve repression of Cyclin T1 expression

    Molecular Pathogenesis of Post-Transplant Acute Kidney Injury: Assessment of Whole-Genome mRNA and MiRNA Profiles.

    Get PDF
    Acute kidney injury (AKI) affects roughly 25% of all recipients of deceased donor organs. The prevention of post-transplant AKI is still an unmet clinical need. We prospectively collected zero-hour, indication as well as protocol kidney biopsies from 166 allografts between 2011 and 2013. In this cohort eight cases with AKI and ten matched allografts without pathology serving as control group were identified with a follow-up biopsy within the first twelve days after engraftment. For this set the zero-hour and follow-up biopsies were subjected to genome wide microRNA and mRNA profiling and analysis, followed by validation in independent expression profiles of 42 AKI and 21 protocol biopsies for strictly controlling the false discovery rate. Follow-up biopsies of AKI allografts compared to time-matched protocol biopsies, further baseline adjustment for zero-hour biopsy expression level and validation in independent datasets, revealed a molecular AKI signature holding 20 mRNAs and two miRNAs (miR-182-5p and miR-21-3p). Next to several established biomarkers such as lipocalin-2 also novel candidates of interest were identified in the signature. In further experimental evaluation the elevated transcript expression level of the secretory leukocyte peptidase inhibitor (SLPI) in AKI allografts was confirmed in plasma and urine on the protein level (p<0.001 and p = 0.003, respectively). miR-182-5p was identified as a molecular regulator of post-transplant AKI, strongly correlated with global gene expression changes during AKI. In summary, we identified an AKI-specific molecular signature providing the ground for novel biomarkers and target candidates such as SLPI and miR-182-5p in addressing AKI

    Comparative Analysis of Human Protein-Coding and Noncoding RNAs between Brain and 10 Mixed Cell Lines by RNA-Seq

    Get PDF
    In their expression process, different genes can generate diverse functional products, including various protein-coding or noncoding RNAs. Here, we investigated the protein-coding capacities and the expression levels of their isoforms for human known genes, the conservation and disease association of long noncoding RNAs (ncRNAs) with two transcriptome sequencing datasets from human brain tissues and 10 mixed cell lines. Comparative analysis revealed that about two-thirds of the genes expressed between brain and cell lines are the same, but less than one-third of their isoforms are identical. Besides those genes specially expressed in brain and cell lines, about 66% of genes expressed in common encoded different isoforms. Moreover, most genes dominantly expressed one isoform and some genes only generated protein-coding (or noncoding) RNAs in one sample but not in another. We found 282 human genes could encode both protein-coding and noncoding RNAs through alternative splicing in the two samples. We also identified more than 1,000 long ncRNAs, and most of those long ncRNAs contain conserved elements across either 46 vertebrates or 33 placental mammals or 10 primates. Further analysis showed that some long ncRNAs differentially expressed in human breast cancer or lung cancer, several of those differentially expressed long ncRNAs were validated by RT-PCR. In addition, those validated differentially expressed long ncRNAs were found significantly correlated with certain breast cancer or lung cancer related genes, indicating the important biological relevance between long ncRNAs and human cancers. Our findings reveal that the differences of gene expression profile between samples mainly result from the expressed gene isoforms, and highlight the importance of studying genes at the isoform level for completely illustrating the intricate transcriptome
    • โ€ฆ
    corecore