171 research outputs found

    Downlink resource auction in a tree topology structured wireless mesh network

    Get PDF
    We analyze the problem of downlink resource allocation in a non-cooperative multi-level tree topology structured wireless mesh network in which a selfish mesh router (MR) may refuse to relay other MRs' traffic so as to improve its own performance at the cost of overall system performance. Based on game theory, we propose an auction framework, where the parent MR serves as the auctioneer while its children MRs act as bidders and compete for time-slots. We derive a payment function from radio resource used for relaying traffic instead of money, so as to simplify the implementation and avoid the possible security problems from monetary payment. We prove the existence and uniqueness of Nash Equilibrium and propose a stochastic best response updating algorithm to allow the bids to iteratively converge to NE in a practical distributed fashion. Simulation results show the proposed auction algorithm greatly outperforms traditional algorithms in non-cooperative environments. © 2010 IEEE.published_or_final_versio

    Band structure engineering in (Bi1-xSbx)2Te3 ternary topological insulators

    Full text link
    Three-dimensional (3D) topological insulators (TI) are novel quantum materials with insulating bulk and topologically protected metallic surfaces with Dirac-like band structure. The spin-helical Dirac surface states are expected to host exotic topological quantum effects and find applications in spintronics and quantum computation. The experimental realization of these ideas requires fabrication of versatile devices based on bulk-insulating TIs with tunable surface states. The main challenge facing the current TI materials exemplified by Bi2Se3 and Bi2Te3 is the significant bulk conduction, which remains unsolved despite extensive efforts involving nanostructuring, chemical doping and electrical gating. Here we report a novel approach for engineering the band structure of TIs by molecular beam epitaxy (MBE) growth of (Bi1-xSbx)2Te3 ternary compounds. Angle-resolved photoemission spectroscopy (ARPES) and transport measurements show that the topological surface states exist over the entire composition range of (Bi1-xSbx)2Te3 (x = 0 to 1), indicating the robustness of bulk Z2 topology. Most remarkably, the systematic band engineering leads to ideal TIs with truly insulating bulk and tunable surface state across the Dirac point that behave like one quarter of graphene. This work demonstrates a new route to achieving intrinsic quantum transport of the topological surface states and designing conceptually new TI devices with well-established semiconductor technology.Comment: Minor changes in title, text and figures. Supplementary information adde

    Cardiovascular Outcomes in Acute Coronary Syndrome and Malnutrition: A Meta-Analysis of Nutritional Assessment Tools

    Get PDF
    Background: There is emerging evidence that malnutrition is associated with poor prognosis among patients with acute coronary syndrome (ACS). // Objectives: This study seeks to elucidate the prognostic impact of malnutrition in patients with ACS and provide a quantitative review of most commonly used nutritional assessment tools. // Methods: Medline and Embase were searched for studies reporting outcomes in patients with malnutrition and ACS. Nutritional screening tools of interest included the Prognostic Nutrition Index, Geriatric Nutritional Risk Index, and Controlling Nutritional Status. A comparative meta-analysis was used to estimate the risk of all-cause mortality and cardiovascular events based on the presence of malnutrition and stratified according to ACS type, ACS intervention, ethnicity, and income. // Results: Thirty studies comprising 37,303 patients with ACS were included, of whom 33.5% had malnutrition. In the population with malnutrition, the pooled mortality rate was 20.59% (95% CI: 14.95%-27.67%). Malnutrition was significantly associated with all-cause mortality risk after adjusting for confounders including age and left ventricular ejection fraction (adjusted HR: 2.66, 95% CI: 1.78-3.96, P = 0.004). There was excess mortality in the group with malnutrition regardless of ACS type (P = 0.132), ethnicity (P = 0.245), and income status (P = 0.058). Subgroup analysis demonstrated no statistically significant difference in mortality risk between individuals with and without malnutrition (P = 0.499) when using Controlling Nutritional Status (OR: 7.80, 95% CI: 2.17-28.07, P = 0.011), Geriatric Nutritional Risk Index (OR: 4.30, 95% CI: 2.78-6.66, P < 0.001), and Prognostic Nutrition Index (OR: 4.67, 95% CI: 2.38-9.17, P = 0.023). // Conclusions: Malnutrition was significantly associated with all-cause mortality risk following ACS, regardless of ACS type, ethnicity, and income status, underscoring the importance of screening and interventional strategies for patients with malnutrition

    MIR-99a and MIR-99b Modulate TGF-β Induced Epithelial to Mesenchymal Plasticity in Normal Murine Mammary Gland Cells

    Get PDF
    Epithelial to mesenchymal transition (EMT) is a key process during embryonic development and disease development and progression. During EMT, epithelial cells lose epithelial features and express mesenchymal cell markers, which correlate with increased cell migration and invasion. Transforming growth factor-β (TGF-β) is a multifunctional cytokine that induces EMT in multiple cell types. The TGF-β pathway is regulated by microRNAs (miRNAs), which are small non-coding RNAs regulating the translation of specific messenger RNAs

    Expression of multidrug resistance markers ABCB1 (MDR-1/P-gp) and ABCC1 (MRP-1) in renal cell carcinoma

    Get PDF
    Background: Renal cancer patients respond poorly to conventional chemotherapy, this unresponsiveness may be attributable to multidrug resistance (MDR). The mechanisms of MDR in renal cancer are not fully understood and the specific contribution of ABC transporter proteins which have been implicated in the chemoresistance of various cancers has not been fully defined in this disease. Methods: The aim of this prospective study was to analyse by immunohistochemistry the expression of two of these transporter efflux pumps, namely MDR-1/P-gp (ABCB1) and MRP-1 (ABCC1) in archival material from 113 renal carcinoma patients. Results: In the largest study of its kind, results presented here show 100% of cases stained positively for P-gp and MRP-1 protein expression. Conclusion: However, although these findings do not prove a causal role, the high frequency of tumours expressing these efflux pumps suggests that they may be important contributors to the chemoresistance of this tumour type

    Mitochondrial DNA Evidence for a Diversified Origin of Workers Building Mausoleum for First Emperor of China

    Get PDF
    Variant studies on ancient DNA have attempted to reveal individual origin. Here, based on cloning sequencing and polymerase chain reaction-restriction fragment length polymorphisms, we analyzed polymorphisms in the first hypervariable region and coding regions of mitochondrial DNA of 19 human bone remains which were excavated from a tomb near the Terra Cotta Warriors and dated some 2,200 years before present. With the aim of shedding light on origins of these samples who were supposed to be workers building the mausoleum for the First Emperor of China, we compared them with 2,164 mtDNA profiles from 32 contemporary Chinese populations at both population and individual levels. Our results showed that mausoleum-building workers may be derived from very diverse sources of origin

    Comparative Analysis of Human Protein-Coding and Noncoding RNAs between Brain and 10 Mixed Cell Lines by RNA-Seq

    Get PDF
    In their expression process, different genes can generate diverse functional products, including various protein-coding or noncoding RNAs. Here, we investigated the protein-coding capacities and the expression levels of their isoforms for human known genes, the conservation and disease association of long noncoding RNAs (ncRNAs) with two transcriptome sequencing datasets from human brain tissues and 10 mixed cell lines. Comparative analysis revealed that about two-thirds of the genes expressed between brain and cell lines are the same, but less than one-third of their isoforms are identical. Besides those genes specially expressed in brain and cell lines, about 66% of genes expressed in common encoded different isoforms. Moreover, most genes dominantly expressed one isoform and some genes only generated protein-coding (or noncoding) RNAs in one sample but not in another. We found 282 human genes could encode both protein-coding and noncoding RNAs through alternative splicing in the two samples. We also identified more than 1,000 long ncRNAs, and most of those long ncRNAs contain conserved elements across either 46 vertebrates or 33 placental mammals or 10 primates. Further analysis showed that some long ncRNAs differentially expressed in human breast cancer or lung cancer, several of those differentially expressed long ncRNAs were validated by RT-PCR. In addition, those validated differentially expressed long ncRNAs were found significantly correlated with certain breast cancer or lung cancer related genes, indicating the important biological relevance between long ncRNAs and human cancers. Our findings reveal that the differences of gene expression profile between samples mainly result from the expressed gene isoforms, and highlight the importance of studying genes at the isoform level for completely illustrating the intricate transcriptome

    LDL Receptor Knock-Out Mice Are a Physiological Model Particularly Vulnerable to Study the Onset of Inflammation in Non-Alcoholic Fatty Liver Disease

    Get PDF
    Non-alcoholic steatohepatitis (NASH) involves steatosis combined with inflammation, which can progress into fibrosis and cirrhosis. Exploring the molecular mechanisms of NASH is highly dependent on the availability of animal models. Currently, the most commonly used animal models for NASH imitate particularly late stages of human disease. Thus, there is a need for an animal model that can be used for investigating the factors that potentiate the inflammatory response within NASH. We have previously shown that 7-day high-fat-high-cholesterol (HFC) feeding induces steatosis and inflammation in both APOE2ki and Ldlr(-/-) mice. However, it is not known whether the early inflammatory response observed in these mice will sustain over time and lead to liver damage. We hypothesized that the inflammatory response in both models is sufficient to induce liver damage over time.APOE2ki and Ldlr(-/-) mice were fed a chow or HFC diet for 3 months. C57Bl6/J mice were used as control.Surprisingly, hepatic inflammation was abolished in APOE2ki mice, while it was sustained in Ldlr(-/-) mice. In addition, increased apoptosis and hepatic fibrosis was only demonstrated in Ldlr(-/-) mice. Finally, bone-marrow-derived-macrophages of Ldlr(-/-) mice showed an increased inflammatory response after oxidized LDL (oxLDL) loading compared to APOE2ki mice.Ldlr(-/-) mice, but not APOE2ki mice, developed sustained hepatic inflammation and liver damage upon long term HFC feeding due to increased sensitivity for oxLDL uptake. Therefore, the Ldlr(-/-) mice are a promising physiological model particularly vulnerable for investigating the onset of hepatic inflammation in non-alcoholic steatohepatitis

    MicroRNA-145 Regulates Chondrogenic Differentiation of Mesenchymal Stem Cells by Targeting Sox9

    Get PDF
    Chondrogenic differentiation of mesenchymal stem cells (MSCs) is accurately regulated by essential transcription factors and signaling cascades. However, the precise mechanisms involved in this process still remain to be defined. MicroRNAs (miRNAs) regulate various biological processes by binding target mRNA to attenuate protein synthesis. To investigate the mechanisms for miRNAs-mediated regulation of chondrogenic differentiation, we identified that miR-145 was decreased during transforming growth factor beta 3 (TGF-β3)-induced chondrogenic differentiation of murine MSCs. Subsequently, dual-luciferase reporter gene assay data demonstrated that miR-145 targets a putative binding site in the 3′-UTR of SRY-related high mobility group-Box gene 9 (Sox9) gene, the key transcription factor for chondrogenesis. In addition, over-expression of miR-145 decreased expression of Sox9 only at protein levels and miR-145 inhibition significantly elevated Sox9 protein levels. Furthermore, over-expression of miR-145 decreased mRNA levels for three chondrogenic marker genes, type II collagen (Col2a1), aggrecan (Agc1), cartilage oligomeric matrix protein (COMP), type IX collagen (Col9a2) and type XI collagen (Col11a1) in C3H10T1/2 cells induced by TGF-β3, whereas anti-miR-145 inhibitor increased the expression of these chondrogenic marker genes. Thus, our studies demonstrated that miR-145 is a key negative regulator of chondrogenic differentiation by directly targeting Sox9 at early stage of chondrogenic differentiation

    Positive Evolutionary Selection of an HD Motif on Alzheimer Precursor Protein Orthologues Suggests a Functional Role

    Get PDF
    HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ) and on the carboxy-terminal region of the extracellular domain (CAED) of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (p<0.0001). The motif is positively selected along the evolutionary process in the majority of APPOs, despite the fact that HD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the “transcription binding site turnover.” CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R) mutations) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs
    corecore