35 research outputs found

    Culture-Free Enumeration of Mycobacterium tuberculosis in Mouse Tissues Using the Molecular Bacterial Load Assay for Preclinical Drug Development

    Get PDF
    BACKGROUND: The turnaround times for phenotypic tests used to monitor the bacterial load of Mycobacterium tuberculosis, in both clinical and preclinical studies, are delayed by the organism’s slow growth in culture media. The existence of differentially culturable populations of M.tuberculosis may result in an underestimate of the true number. Moreover, culture methods are susceptible to contamination resulting in loss of critical data points. Objectives: We report the adaptation of our robust, culture-free assay utilising 16S ribosomal RNA, developed for sputum, to enumerate the number of bacteria present in animal tissues as a tool to improve the read-outs in preclinical drug efficacy studies. METHODS: Initial assay adaptation was performed using naïve mouse lungs spiked with known quantities of M. tuberculosis and an internal RNA control. Tissues were homogenised, total RNA extracted, and enumeration performed using RT-qPCR. We then evaluated the utility of the assay, in comparison to bacterial counts estimated using growth assays on solid and liquid media, to accurately inform bacterial load in tissues from M. tuberculosis-infected mice before and during treatment with a panel of drug combinations. RESULTS: When tested on lung tissues derived from infected mice, the MBL assay produced comparable results to the bacterial counts in solid culture (colony forming units: CFU). Notably, under specific drug treatments, the MBL assay was able to detect a significantly higher number of M. tuberculosis compared to CFU, likely indicating the presence of bacteria that were unable to produce colonies in solid-based culture. Additionally, growth recovery in liquid media using the most probable number (MPN) assay was able to account for the discrepancy between the MBL assay and CFU number, suggesting that the MBL assay detects differentially culturable sub-populations of M. tuberculosis. CONCLUSIONS: The MBL assay can enumerate the bacterial load in animal tissues in real time without the need to wait for extended periods for cultures to grow. The readout correlates well with CFUs. Importantly, we have shown that the MBL is able to measure specific populations of bacteria not cultured on solid agar. The adaptation of this assay for preclinical studies has the potential to decrease the readout time of data acquisition from animal experiments and could represent a valuable tool for tuberculosis drug discovery and development

    Effect of C-2 substitution on the stability of non-traditional cephalosporins in mouse plasma

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.A systematic study of the stability of a set of cephalosporins in mouse plasma reveals that cephalosporins lacking an acidic moiety at C-2 may be vulnerable to β-lactam cleavage in mouse plasma

    Intensified treatment with high dose Rifampicin and Levofloxacin compared to standard treatment for adult patients with Tuberculous Meningitis (TBM-IT): protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tuberculous meningitis is the most severe form of tuberculosis. Mortality for untreated tuberculous meningitis is 100%. Despite the introduction of antibiotic treatment for tuberculosis the mortality rate for tuberculous meningitis remains high; approximately 25% for HIV-negative and 67% for HIV positive patients with most deaths occurring within one month of starting therapy. The high mortality rate in tuberculous meningitis reflects the severity of the condition but also the poor antibacterial activity of current treatment regimes and relatively poor penetration of these drugs into the central nervous system. Improving the antitubercular activity in the central nervous system of current therapy may help improve outcomes. Increasing the dose of rifampicin, a key drug with known poor cerebrospinal fluid penetration may lead to higher drug levels at the site of infection and may improve survival. Of the second generation fluoroquinolones, levofloxacin may have the optimal pharmacological features including cerebrospinal fluid penetration, with a ratio of Area Under the Curve (AUC) in cerebrospinal fluid to AUC in plasma of >75% and strong bactericidal activity against <it>Mycobacterium tuberculosis</it>. We propose a randomized controlled trial to assess the efficacy of an intensified anti-tubercular treatment regimen in tuberculous meningitis patients, comparing current standard tuberculous meningitis treatment regimens with standard treatment intensified with high-dose rifampicin and additional levofloxacin.</p> <p>Methods/Design</p> <p>A randomized, double blind, placebo-controlled trial with two parallel arms, comparing standard Vietnamese national guideline treatment for tuberculous meningitis with standard treatment <it>plus </it>an increased dose of rifampicin (to 15 mg/kg/day total) and additional levofloxacin. The study will include 750 patients (375 per treatment group) including a minimum of 350 HIV-positive patients. The calculation assumes an overall mortality of 40% vs. 30% in the two arms, respectively (corresponding to a target hazard ratio of 0.7), a power of 80% and a two-sided significance level of 5%. Randomization ratio is 1:1. The primary endpoint is overall survival, i.e. time from randomization to death during a follow-up period of 9 months. Secondary endpoints are: neurological disability at 9 months, time to new neurological event or death, time to new or recurrent AIDS-defining illness or death (in HIV-positive patients only), severe adverse events, and rate of treatment interruption for adverse events.</p> <p>Discussion</p> <p>Currently very few options are available for the treatment of TBM and the mortality rate remains unacceptably high with severe disabilities seen in many of the survivors. This trial is based on the hypothesis that current anti-mycobacterial treatment schedules for TBM are not potent enough and that outcomes will be improved by increasing the CSF penetrating power of this regimen by optimising dosage and using additional drugs with better CSF penetration.</p> <p>Trial registration</p> <p>International Standard Randomised Controlled Trial Number <a href="http://www.controlled-trials.com/ISRCTN61649292">ISRCTN61649292</a></p
    corecore