13 research outputs found
Characterisation of human kallikrein 6/protease M expression in ovarian cancer
Kallikrein 6 (hK6, also known as protease M/zyme/neurosin) is a member of the human kallikrein gene family. We have previously cloned the cDNA for this gene by differential display and shown the overexpression of the mRNA in breast and ovarian primary tumour tissues and cell lines. To thoroughly characterise the expression of this kallikrein in ovarian cancer, we have developed a novel monoclonal antibody specific to hK6 and employed it in immunohistochemistry with a wide range of ovarian tumour samples. The expression was found elevated in 67 of 80 cases of ovarian tumour samples and there was a significant difference in the expression levels between normal and benign ovarian tissues and the borderline and invasive tumours (P<0.001). There was no difference of expression level between different subtypes of tumours. More significantly, high level of kallikrein 6 expression was found in many early-stage and low-grade tumours, and elevated hK6 proteins were found in benign epithelia coexisting with borderline and invasive tissues, suggesting that overexpression of hK6 is an early phenomenon in the development of ovarian cancer. Quantitative real-time reverse transcription-polymerase chain reactions also showed elevated kallikrein 6 mRNA expression in ovarian tumours. Genomic Southern analysis of 19 ovarian tumour samples suggested that gene amplification is one mechanism for the overexpression of hK6 in ovarian cancer
Androgen and retinoic acid interaction in LNCaP cells, effects on cell proliferation and expression of retinoic acid receptors and epidermal growth factor receptor
BACKGROUND: Modulation of the expression of retinoic acid receptors (RAR) α and γ in adult rat prostate by testosterone (T) suggests that RAR signaling events might mediate some of the androgen effects on prostate cells. METHOD: In this study, we examined the interactions between T and retinoic acid (RA) in cell growth of human prostate carcinoma cells, LNCaP, and their relationship with the expression of RAR and epidermal growth factor receptor (EGF-R). RESULTS: Both T and RA, when administered alone, stimulated (3)H-thymidine incorporation in LNCaP cells in a dose-dependent manner; the effect of each agent was reciprocally attenuated by the other agent. Testosterone treatment of LNCaP cells also resulted in dose dependent, biphasic increases in RAR α and γ mRNAs; increases paralleled that of (3)H-thymidine incorporation and were attenuated by the presence of 100 nM RA. These results suggest a link between RAR signaling and the effect of T on LNCaP cell growth. Gel electrophoretic mobility shift assays revealed the presence of putative androgen responsive element (ARE) in the promoter region of RAR α gene, suggesting that a direct AR-DNA interaction might mediate the effects of T on RAR α gene. Furthermore, treatment of LNCaP cells with 20 nM T resulted in an increase in EGF-R. In contrast, EGF-R was suppressed by 100 nM RA that also suppressed the effect of T. CONCLUSIONS: Current results demonstrate interactions between T and RA in the expression of RARs and cell growth in LNCaP cells. The presence of putative ARE in the promoter of the RAR α gene suggests that AR-DNA interaction might mediate the effects of T on RAR α gene. The opposite effects of T and RA on the expression of RAR and EGF-R suggest that signal events of these receptors might be involved in the interaction between T and RA in the control of LNCaP cell growth
Inhibitory effects of retinoic acid metabolism blocking agents (RAMBAs) on the growth of human prostate cancer cells and LNCaP prostate tumour xenografts in SCID mice
In recent studies, we have identified several highly potent all-trans-retinoic acid (ATRA) metabolism blocking agents (RAMBAs). On the basis of previous effects of liarozole (a first-generation RAMBA) on the catabolism of ATRA and on growth of rat Dunning R3227G prostate tumours, we assessed the effects of our novel RAMBAs on human prostate tumour (PCA) cell lines. We examined three different PCA cell lines to determine their capacity to induce P450-mediated oxidation of ATRA. Among the three different cell lines, enhanced catabolism was detected in LNCaP, whereas it was not found in PC-3 and DU-145. This catabolism was strongly inhibited by our RAMBAs, the most potent being VN/14-1, VN/50-1, VN/66-1, and VN/69-1 with IC50 values of 6.5, 90.0, 62.5, and 90.0 nM, respectively. The RAMBAs inhibited the growth of LNCaP cells with IC50 values in the μM-range. In LNCaP cell proliferation assays, VN/14-1, VN/50-1, VN/66-1, and VN/69-1 also enhanced by 47-, 60-, 70-, and 65-fold, respectively, the ATRA-mediated antiproliferative activity. We then examined the molecular mechanism underlying the growth inhibitory properties of ATRA alone and in combination with RAMBAs. The mechanism appeared to involve the induction of differentiation, cell-cycle arrest, and induction of apoptosis (TUNEL), involving increase in Bad expression and decrease in Bcl-2 expression. Treatment of LNCaP tumours growing in SCID mice with VN/66-1 and VN/69-1 resulted in modest but statistically significant tumour growth inhibition of 44 and 47%, respectively, while treatment with VN/14-1 was unexpectedly ineffective. These results suggest that some of our novel RAMBAs may be useful agents for the treatment of prostate cancer
M phase phosphorylation of cytoplasmic dynein intermediate chain and p150(Glued)
[[abstract]]To understand how the dramatic cell biological changes of oocyte maturation are brought about, we have begun to identify proteins whose phosphorylation state changes during Xenopus oocyte maturation. Here we have focused on one such protein, p83. We partially purified p83, obtained peptide sequence, and identified it as the intermediate chain of cytoplasmic dynein. During oocyte maturation, dynein intermediate chain became hyperphosphorylated at the time of germinal vesicle breakdown and remained hyperphosphorylated throughout the rest of meiosis and early embryogenesis. p150(Glued), a subunit of dynactin that has been shown to bind to dynein intermediate chain, underwent similar changes in its phosphorylation, Both dynein intermediate chain and p150(Glued) also became hyperphosphorylated during M phase in XTC-2 cells and HeLa cells. Thus, two components of the dynein-dynactin complex undergo coordinated phosphorylation changes at two G(2)/M transitions (maturation in oocytes and mitosis in cells in culture) but remain constitutively in their M phase forms during early embryogenesis. Dynein intermediate chain and p150(Glued) phosphorylation may positively regulate mitotic processes, such as spindle assembly or orientation, or negatively regulate interphase processes such as minus-end-directed organelle trafficking
Caspase activation of mammalian Sterile 20-like kinase 3 (Mst3) - Nuclear translocation and induction of apoptosis
[[abstract]]Mammalian Sterile 20-like kinase 3 (Mst3), the physiological functions of which are unknown, is a member of the germinal center kinase-III family. It contains a conserved kinase domain at its NH2 terminus, whereas there is a regulatory domain at its COOH terminus. In this study we demonstrate that endogenous Mst3 is specifically cleaved when Jurkat cells were treated with anti-Fas antibody or staurosporine and that this cleavage is inhibited by the caspase inhibitor, Ac-DEVD-CHO. Using apoptotic Jurkat cell extracts and recombinant caspases, we mapped the caspase cleavage site, AETD(313), which is at the junction of the NH2-terminal kinase domain and the COOH-terminal regulatory domain. Caspase-mediated cleavage of. Mst3 activates its intrinsic kinase activity, suggesting that the COOH-terminal domain of Mst3 negatively regulates the kinase domain. Furthermore, proteolytic removal of the Mst3 COOH-terminal domain by caspases promotes nuclear translocation. Ectopic expression of either wild-type or COOH-terminal truncated Mst3 in cells results in DNA fragmentation and morphological changes characteristic of apoptosis. By contrast, no such changes were exhibited for catalytically inactive Mst3, implicating the involvement of Mst3 kinase activity for mediation of these effects. Collectively, these results support the notion that caspase-mediated proteolytic activation of Mst3 contributes to apoptosis
Oscillations in MAPK cascade triggered by two distinct designs of coupled positive and negative feedback loops
<p>Abstract</p> <p>Background</p> <p>Feedback loops, both positive and negative are embedded in the Mitogen Activated Protein Kinase (MAPK) cascade. In the three layer MAPK cascade, both feedback loops originate from the terminal layer and their sites of action are either of the two upstream layers. Recent studies have shown that the cascade uses coupled positive and negative feedback loops in generating oscillations. Two plausible designs of coupled positive and negative feedback loops can be elucidated from the literature; in one design the positive feedback precedes the negative feedback in the direction of signal flow and vice-versa in another. But it remains unexplored how the two designs contribute towards triggering oscillations in MAPK cascade. Thus it is also not known how amplitude, frequency, robustness or nature (analogous/digital) of the oscillations would be shaped by these two designs.</p> <p>Results</p> <p>We built two models of MAPK cascade that exhibited oscillations as function of two underlying designs of coupled positive and negative feedback loops. Frequency, amplitude and nature (digital/analogous) of oscillations were found to be differentially determined by each design. It was observed that the positive feedback emerging from an oscillating MAPK cascade and functional in an external signal processing module can trigger oscillations in the target module, provided that the target module satisfy certain parametric requirements. The augmentation of the two models was done to incorporate the nuclear-cytoplasmic shuttling of cascade components followed by induction of a nuclear phosphatase. It revealed that the fate of oscillations in the MAPK cascade is governed by the feedback designs. Oscillations were unaffected due to nuclear compartmentalization owing to one design but were completely abolished in the other case.</p> <p>Conclusion</p> <p>The MAPK cascade can utilize two distinct designs of coupled positive and negative feedback loops to trigger oscillations. The amplitude, frequency and robustness of the oscillations in presence or absence of nuclear compartmentalization were differentially determined by two designs of coupled positive and negative feedback loops. A positive feedback from an oscillating MAPK cascade was shown to induce oscillations in an external signal processing module, uncovering a novel regulatory aspect of MAPK signal processing.</p
Single-cell western blotting
To measure cell-to-cell variation in protein-mediated functions — a hallmark of biological processes — we developed an approach to conduct ~10(3) concurrent single-cell western blots (scWesterns) in ~4 hours. A microscope slide supporting a 30 µm-thick photoactive polyacrylamide gel enables western blotting comprised of: settling of single cells into microwells, lysis in situ, gel electrophoresis, photoinitiated blotting to immobilize proteins, and antibody probing. We apply this scWestern to monitor single rat neural stem cell differentiation and responses to mitogen stimulation. The scWestern quantifies target proteins even with off-target antibody binding, multiplexes to 11 protein targets per single cell with detection thresholds of <30,000 molecules, and supports analyses of low starting cell numbers (~200) when integrated with fluorescence activated cell sorting. The scWestern thus overcomes limitations in single-cell protein analysis (i.e., antibody fidelity, sensitivity, and starting cell number) and constitutes a versatile tool for the study of complex cell populations at single-cell resolution