44 research outputs found
Cyclic Tetrapyrrolic Photosensitisers from the leaves of Phaeanthus ophthalmicus
<p>Abstract</p> <p>Background</p> <p>Twenty-seven extracts from 26 plants were identified as photo-cytotoxic in the course of our bioassay guided screening program for photosensitisers from 128 extracts prepared from 64 terrestrial plants in two different collection sites in Malaysia - Royal Belum Forest Reserve in the State of Perak and Gunung Nuang in the State of Selangor. One of the photo-cytotoxic extracts from the leaves of <it>Phaeanthus ophtalmicus </it>was further investigated.</p> <p>Results</p> <p>The ethanolic extract of the leaves from <it>Phaeanthus ophtalmicus </it>was able to reduce the <it>in vitro </it>viability of leukaemic HL60 cells to < 50% when exposed to 9.6 J/cm<sup>2 </sup>of a broad spectrum light at a concentration of 20 μg/mL. Dereplication of the photo-cytotoxic fractions from <it>P. ophthalmicus </it>extracts based on TLC R<sub>f </sub>values and HPLC co-injection of reference tetrapyrrolic compounds enabled quick identification of known photosensitisers, pheophorbide-<it>a</it>, pheophorbide-<it>a </it>methyl ester, 13<sup>2</sup>-hydroxypheophorbide-<it>a </it>methyl ester, pheophytin-<it>a </it>and 15<sup>1</sup>-hydroxypurpurin 7-lactone dimethyl ester. In addition, compound <b>1 </b>which was not previously isolated as a natural product was also identified as 7-formyl-15<sup>1</sup>-hydroxypurpurin-7-lactone methyl ester using standard spectroscopic techniques.</p> <p>Conclusions</p> <p>Our results suggest that the main photosensitisers in plants are based on the cyclic tetrapyrrole structure and photosensitisers with other structures, if present, are present in very minor amounts or are not as active as those with the cyclic tetrapyrrole structure.</p
Recommended from our members
Erratum: Sequence data and association statistics from 12,940 type 2 diabetes cases and controls.
This corrects the article DOI: 10.1038/sdata.2017.179
Loss of C2orf69 defines a fatal autoinflammatory syndrome in humans and zebrafish that evokes a glycogen-storage-associated mitochondriopathy
Summary
Human C2orf69 is an evolutionarily conserved gene whose function is unknown. Here, we report eight unrelated families from which 20 children presented with a fatal syndrome consisting of severe autoinflammation and progredient leukoencephalopathy with recurrent seizures; 12 of these subjects, whose DNA was available, segregated homozygous loss-of-function C2orf69 variants. C2ORF69 bears homology to esterase enzymes, and orthologs can be found in most eukaryotic genomes, including that of unicellular phytoplankton. We found that endogenous C2ORF69 (1) is loosely bound to mitochondria, (2) affects mitochondrial membrane potential and oxidative respiration in cultured neurons, and (3) controls the levels of the glycogen branching enzyme 1 (GBE1) consistent with a glycogen-storage-associated mitochondriopathy. We show that CRISPR-Cas9-mediated inactivation of zebrafish C2orf69 results in lethality by 8 months of age due to spontaneous epileptic seizures, which is preceded by persistent brain inflammation. Collectively, our results delineate an autoinflammatory Mendelian disorder of C2orf69 deficiency that disrupts the development/homeostasis of the immune and central nervous systems
Sleeping Beauty insertional mutagenesis screen identifies the pro-metastatic roles of CNPY2 and ACTN2 in hepatocellular carcinoma tumor progression
202109 bcrcAuthor’s OriginalRGCR5050-18Publishe