35 research outputs found

    Cardiac magnetic resonance T1 and extracellular volume mapping with motion correction and co-registration based on fast elastic image registration

    Get PDF
    OBJECTIVE: Our aim was to investigate the technical feasibility of a novel motion compensation method for cardiac magntic resonance (MR) T1 and extracellular volume fraction (ECV) mapping. MATERIALS AND METHODS: Native and post-contrast T1 maps were obtained using modified look-locker inversion recovery (MOLLI) pulse sequences with acquisition scheme defined in seconds. A nonrigid, nonparametric, fast elastic registration method was applied to generate motion-corrected T1 maps and subsequently ECV maps. Qualitative rating was performed based on T1 fitting-error maps and overlay images. Local deformation vector fields were produced for quantitative assessment. Intra- and inter-observer reproducibility were compared with and without motion compensation. RESULTS: Eighty-two T1 and 39 ECV maps were obtained in 21 patients with diverse myocardial diseases. Approximately 60% demonstrated clear quality improvement after motion correction for T1 mapping, particularly for the poor-rating cases (23% before vs 2% after). Approximately 67% showed further improvement with co-registration in ECV mapping. Although T1 and ECV values were not clinically significantly different before and after motion compensation, there was improved intra- and inter-observer reproducibility after motion compensation. CONCLUSIONS: Automated motion correction and co-registration improved the qualitative assessment and reproducibility of cardiac MR T1 and ECV measurements, allowing for more reliable ECV mapping

    Lowering the recommended maximal wall thickness threshold improves diagnostic sensitivity in Asians with hypertrophic cardiomyopathy

    Get PDF
    BACKGROUND: Hypertrophic cardiomyopathy (HCM) is defined as left ventricular end-diastolic maximal wall thickness (WTMax) ≥15.0 mm, without accounting for ethnicity, sex, and body size. It is well-established that Asians have smaller hearts than do Caucasians. OBJECTIVES: This study aims to examine the implications of this single absolute WTMax threshold on the diagnosis of HCM in Asians. METHODS: The study consisted of 360 healthy volunteers (male: n = 174; age: 50 ± 12 years) and 114 genetically characterized patients with HCM (male: n = 83; age: 52 ± 13 years; genotype-positive, n = 39). All participants underwent cardiovascular magnetic resonance. WTMax was measured semiautomatically at end-diastole according to the standard 16 myocardial segments. RESULTS: Healthy male volunteers had increased WTMax compared with that of female volunteers (8.4 ± 1.2 mm vs 6.6 ± 1.1 mm, respectively; P 15.0 mm (specificity of 100% and sensitivity of 51%). Lowering WTMax thresholds to 10.0 mm in female patients and 12.0 mm in male patients did not affect specificity (100%) but significantly improved sensitivity (84%). Despite lower left ventricular mass, female patients with HCM demonstrated more features of adverse cardiac remodeling than did male patients: increased myocardial fibrosis, higher asymmetric ratio, and disproportionately worse myocardial strain. CONCLUSIONS: The study highlights cautious application of guideline-recommended WTMax to diagnose HCM in Asians. Lowering WTMax to account for ethnicity and sex improves diagnostic sensitivity without compromising specificity

    First-phase ejection fraction by CMR predicts outcomes in aortic stenosis

    Get PDF
    BACKGROUND: First-phase ejection fraction (EF1; the ejection fraction measured during active systole up to the time of maximal aortic flow) measured by transthoracic echocardiography (TTE) is a powerful predictor of outcomes in patients with aortic stenosis. We aimed to assess whether cardiovascular magnetic resonance (CMR) might provide more precise measurements of EF1 than TTE and to examine the correlation of CMR EF1 with measures of fibrosis. METHODS: In 141 patients with at least mild aortic stenosis, we measured CMR EF1 from a short-axis 3D stack and compared its variability with TTE EF1, and its associations with myocardial fibrosis and clinical outcome (aortic valve replacement (AVR) or death). RESULTS: Intra- and inter-observer variation of CMR EF1 (standard deviations of differences within and between observers of 2.3% and 2.5% units respectively) was approximately 50% that of TTE EF1. CMR EF1 was strongly predictive of AVR or death. On multivariable Cox proportional hazards analysis, the hazard ratio for CMR EF1 was 0.93 (95% confidence interval 0.89–0.97, p = 0.001) per % change in EF1 and, apart from aortic valve gradient, CMR EF1 was the only imaging or biochemical measure independently predictive of outcome. Indexed extracellular volume was associated with AVR or death, but not after adjusting for EF1. CONCLUSIONS: EF1 is a simple robust marker of early left ventricular impairment that can be precisely measured by CMR and predicts outcome in aortic stenosis. Its measurement by CMR is more reproducible than that by TTE and may facilitate left ventricular structure–function analysis

    Impact of diabetes on myocardial fibrosis in patients with hypertension: the REMODEL study

    Get PDF
    BACKGROUND: Compared with patients with hypertension only, those with hypertension and diabetes (HTN/DM) have worse prognosis. We aimed to characterize morphological differences between hypertension and HTN/DM using cardiovascular magnetic resonance; and compare differentially expressed proteins associated with myocardial fibrosis using high throughput multiplex assays. METHODS: Asymptomatic patients underwent cardiovascular magnetic resonance: 438 patients with hypertension (60±8 years; 59% males) and 167 age- and sex-matched patients with HTN/DM (60±10 years; 64% males). Replacement myocardial fibrosis was defined as nonischemic late gadolinium enhancement on cardiovascular magnetic resonance. Extracellular volume fraction was used as a marker of diffuse myocardial fibrosis. A total of 184 serum proteins (Olink Target Cardiovascular Disease II and III panels) were measured to identify unique signatures associated with myocardial fibrosis in all patients. RESULTS: Despite similar left ventricular mass (P=0.344) and systolic blood pressure (P=0.086), patients with HTN/DM had increased concentricity and worse multidirectional strain (P<0.001 for comparison of all strain measures) compared to hypertension only. Replacement myocardial fibrosis was present in 28% of patients with HTN/DM compared to 16% of those with hypertension (P<0.001). NT-proBNP (N-terminal pro-B-type natriuretic peptide) was the only protein differentially upregulated in hypertension patients with replacement myocardial fibrosis and independently associated with extracellular volume. In patients with HTN/DM, GDF-15 (growth differentiation factor 15) was independently associated with replacement myocardial fibrosis and extracellular volume. Ingenuity Pathway Analysis demonstrated a strong association between increased inflammatory response/immune cell trafficking and myocardial fibrosis in patients with HTN/DM. CONCLUSIONS: Adverse cardiac remodeling was observed in patients with HTN/DM. The novel proteomic signatures and associated biological activities of increased immune and inflammatory response may partly explain these observations

    Identification of myocardial diffuse fibrosis by 11 heartbeat MOLLI T1 mapping: averaging to improve precision and correlation with collagen volume fraction

    Get PDF
    Objectives: Our objectives involved identifying whether repeated averaging in basal and mid left ventricular myocardial levels improves precision and correlation with collagen volume fraction for 11 heartbeat MOLLI T1 mapping versus assessment at a single ventricular level. Materials and methods: For assessment of T1 mapping precision, a cohort of 15 healthy volunteers underwent two CMR scans on separate days using an 11 heartbeat MOLLI with a 5(3)3 beat scheme to measure native T1 and a 4(1)3(1)2 beat post-contrast scheme to measure post-contrast T1, allowing calculation of partition coefficient and ECV. To assess correlation of T1 mapping with collagen volume fraction, a separate cohort of ten aortic stenosis patients scheduled to undergo surgery underwent one CMR scan with this 11 heartbeat MOLLI scheme, followed by intraoperative tru-cut myocardial biopsy. Six models of myocardial diffuse fibrosis assessment were established with incremental inclusion of imaging by averaging of the basal and mid-myocardial left ventricular levels, and each model was assessed for precision and correlation with collagen volume fraction. Results: A model using 11 heart beat MOLLI imaging of two basal and two mid ventricular level averaged T1 maps provided improved precision (Intraclass correlation 0.93 vs 0.84) and correlation with histology (R2 = 0.83 vs 0.36) for diffuse fibrosis compared to a single mid-ventricular level alone. ECV was more precise and correlated better than native T1 mapping. Conclusion: T1 mapping sequences with repeated averaging could be considered for applications of 11 heartbeat MOLLI, especially when small changes in native T1/ECV might affect clinical management

    Sacubitril/valsartan versus valsartan in regressing myocardial fibrosis in hypertension: a prospective, randomized, open-label, blinded endpoint clinical trial protocol

    Get PDF
    Background: Diffuse interstitial myocardial fibrosis is a key common pathological manifestation in hypertensive heart disease (HHD) progressing to heart failure (HF). Angiotensin receptor–neprilysin inhibitors (ARNi), now a front-line treatment for HF, confer benefits independent of blood pressure, signifying a multifactorial mode of action beyond hemodynamic regulation. We aim to test the hypothesis that compared with angiotensin II receptor blockade (ARB) alone, ARNi is more effective in regressing diffuse interstitial myocardial fibrosis in HHD. Methods: Role of ARNi in Ventricular Remodeling in Hypertensive LVH (REVERSE-LVH) is a prospective, randomized, open-label, blinded endpoint (PROBE) clinical trial. Adults with hypertension and left ventricular hypertrophy (LVH) according to Asian sex- and age-specific thresholds on cardiovascular magnetic resonance (CMR) imaging are randomized to treatment with either sacubitril/valsartan (an ARNi) or valsartan (an ARB) in 1:1 ratio for a duration of 52 weeks, at the end of which a repeat CMR is performed to assess differential changes from baseline between the two groups. The primary endpoint is the change in CMR-derived diffuse interstitial fibrosis volume. Secondary endpoints include changes in CMR-derived left ventricular mass, volumes, and functional parameters. Serum samples are collected and stored to assess the effects of ARNi, compared with ARB, on circulating biomarkers of cardiac remodeling. The endpoints will be analyzed with reference to the corresponding baseline parameters to evaluate the therapeutic effect of sacubitril/valsartan vs. valsartan. Discussion: REVERSE-LVH will examine the anti-fibrotic potential of sacubitril/valsartan and will offer mechanistic insights into the clinical benefits of sacubitril/valsartan in hypertension in relation to cardiac remodeling. Advancing the knowledge of the pathophysiology of HHD will consolidate effective risk stratification and personalized treatment through a multimodal manner integrating complementary CMR and biomarkers into the conventional care approach

    Markers of focal and diffuse nonischemic myocardial fibrosis are associated with adverse cardiac remodeling and prognosis in patients with hypertension: the REMODEL study

    Get PDF
    Background: The prognostic significance of focal and diffuse myocardial fibrosis in patients with cardiovascular risk factors is unclear. Methods: REMODEL (Response of the Myocardium to Hypertrophic Conditions in the Adult Population) is an observational cohort of asymptomatic patients with essential hypertension. All participants underwent cardiovascular magnetic resonance to assess for myocardial fibrosis: nonischemic late gadolinium enhancement (LGE), native myocardial T1, postcontrast myocardial T1, extracellular volume fraction including/excluding LGE regions, interstitial volume (extracellular volume×myocardial volume), and interstitial/myocyte ratio. Primary outcome was a composite of first occurrence acute coronary syndrome, heart failure hospitalization, strokes, and cardiovascular mortality. Patients were recruited from February 2016 and followed until June 2021. Results: Of the 786 patients with hypertension (58±11 years; 39% women; systolic blood pressure, 130±14 mm Hg), 145 (18%) had nonischemic LGE. Patients with nonischemic LGE were more likely to be men, have diabetes, be current smokers, and have higher blood pressure (P<0.05 for all). Compared with those without LGE, patients with nonischemic LGE had greater left ventricular mass (66±22 versus 49±9 g/m2; P<0.001), worse multidirectional strain (P<0.001 for all measures), and elevated circulating markers of myocardial wall stress and myocardial injury, adjusted for potential confounders. Twenty-four patients had primary outcome over 39 (30–50) months of follow-up. Of all the cardiovascular magnetic resonance markers of myocardial fibrosis assessed, only nonischemic LGE (hazard ratio, 6.69 [95% CI, 2.54–17.60]; P<0.001) and indexed interstitial volume (hazard ratio, 1.11 [95% CI, 1.04–1.19]; P=0.002) demonstrated independent association with primary outcome. Conclusions: In patients with hypertension, myocardial fibrosis on cardiovascular magnetic resonance is associated with adverse cardiac remodeling and outcomes

    Titin truncating variants affect heart function in disease cohorts and the general population

    Get PDF
    Titin-truncating variants (TTNtv) commonly cause dilated cardiomyopathy (DCM). TTNtv are also encountered in ~1% of the general population, where they may be silent, perhaps reflecting allelic factors. To better understand TTNtv, we integrated TTN allelic series, cardiac imaging and genomic data in humans and studied rat models with disparate TTNtv. In patients with DCM, TTNtv throughout titin were significantly associated with DCM. Ribosomal profiling in rat showed the translational footprint of premature stop codons in Ttn, TTNtv-position-independent nonsense-mediated degradation of the mutant allele and a signature of perturbed cardiac metabolism. Heart physiology in rats with TTNtv was unremarkable at baseline but became impaired during cardiac stress. In healthy humans, machine-learning-based analysis of high-resolution cardiac imaging showed TTNtv to be associated with eccentric cardiac remodeling. These data show that TTNtv have molecular and physiological effects on the heart across species, with a continuum of expressivity in health and disease

    Markers of Myocardial Damage Predict Mortality in Patients With Aortic Stenosis

    Get PDF
    Background: Cardiovascular magnetic resonance (CMR) is increasingly used for risk stratification in aortic stenosis (AS). However, the relative prognostic power of CMR markers and their respective thresholds remains undefined. Objectives: Using machine learning, the study aimed to identify prognostically important CMR markers in AS and their thresholds of mortality. Methods: Patients with severe AS undergoing AVR (n = 440, derivation; n = 359, validation cohort) were prospectively enrolled across 13 international sites (median 3.8 years’ follow-up). CMR was performed shortly before surgical or transcatheter AVR. A random survival forest model was built using 29 variables (13 CMR) with post-AVR death as the outcome. Results: There were 52 deaths in the derivation cohort and 51 deaths in the validation cohort. The 4 most predictive CMR markers were extracellular volume fraction, late gadolinium enhancement, indexed left ventricular end-diastolic volume (LVEDVi), and right ventricular ejection fraction. Across the whole cohort and in asymptomatic patients, risk-adjusted predicted mortality increased strongly once extracellular volume fraction exceeded 27%, while late gadolinium enhancement >2% showed persistent high risk. Increased mortality was also observed with both large (LVEDVi >80 mL/m2) and small (LVEDVi ≤55 mL/m2) ventricles, and with high (>80%) and low (≤50%) right ventricular ejection fraction. The predictability was improved when these 4 markers were added to clinical factors (3-year C-index: 0.778 vs 0.739). The prognostic thresholds and risk stratification by CMR variables were reproduced in the validation cohort. Conclusions: Machine learning identified myocardial fibrosis and biventricular remodeling markers as the top predictors of survival in AS and highlighted their nonlinear association with mortality. These markers may have potential in optimizing the decision of AVR
    corecore