16 research outputs found

    In Vivo Evaluation of Indium-111-Labeled 800CW as a Necrosis-Avid Contrast Agent.

    Get PDF
    Current clinical measurements for tumor treatment efficiency rely often on changes in tumor volume measured as shrinkage by CT or MRI, which become apparent after multiple lines of treatment and pose a physical and psychological burden on the patient. Detection of therapy-induced cell death in the tumor can be a fast measure for treatment efficiency. However, there are no reliable clinical tools for detection of tumor necrosis. Previously, we studied the necrosis avidity of cyanine-based fluorescent dyes, which suffered long circulation times before tumor necrosis could be imaged due to low hydrophilicity. We now present the application of radiolabeled 800CW, a commercially available cyanine with high hydrophilicity, to image tumor necrosis in a mouse model. We conjugated 800CW to DOTA via a PEG linker, for labeling with single-photon emission-computed tomography isotope indium-111, yielding [ <sup>111</sup> In]In-DOTA-PEG <sub>4</sub> -800CW. We then investigated specific [ <sup>111</sup> In]In-DOTA-PEG <sub>4</sub> -800CW uptake by dead cells in vitro, using both fluorescence and radioactivity as detection modalities. Finally, we investigated [ <sup>111</sup> In]In-DOTA-PEG <sub>4</sub> -800CW uptake into necrotic tumor regions of a 4T1 breast tumor model in mice. We successfully prepared a precursor and developed a reliable procedure for labeling 800CW with indium-111. We detected specific [ <sup>111</sup> In]In-DOTA-PEG <sub>4</sub> -800CW uptake by dead cells, using both fluorescence and radioactivity. Albeit with a tumor uptake of only 0.37%ID/g at 6 h post injection, we were able to image tumor necrosis with a tumor to background ratio of 7:4. Fluorescence and radioactivity in cryosections from the dissected tumors were colocalized with tumor necrosis, confirmed by TUNEL staining. [ <sup>111</sup> In]In-DOTA-PEG <sub>4</sub> -800CW can be used to image tumor necrosis in vitro and in vivo. Further research will elucidate the application of [ <sup>111</sup> In]In-DOTA-PEG <sub>4</sub> -800CW or other radiolabeled hydrophilic cyanines for the detection of necrosis caused by chemotherapy or other anti-cancer therapies. This can provide valuable prognostic information in treatment of solid tumors

    pH-Channeling in Cancer: How pH-Dependence of Cation Channels Shapes Cancer Pathophysiology.

    Get PDF
    Tissue acidosis plays a pivotal role in tumor progression: in particular, interstitial acidosis promotes tumor cell invasion, and is a major contributor to the dysregulation of tumor immunity and tumor stromal cells. The cell membrane and integral membrane proteins commonly act as important sensors and transducers of altered pH. Cell adhesion molecules and cation channels are prominent membrane proteins, the majority of which is regulated by protons. The pathophysiological consequences of proton-sensitive ion channel function in cancer, however, are scarcely considered in the literature. Thus, the main focus of this review is to highlight possible events in tumor progression and tumor immunity where the pH sensitivity of cation channels could be of great importance

    Improved Multimodal Tumor Necrosis Imaging with IRDye800CW-DOTA Conjugated to an Albumin-Binding Domain.

    Get PDF
    To assess our improved NACA for the detection of tumor necrosis. We increased the blood circulation time of our NACA by adding an albumin-binding domain to the molecular structure. We tested the necrosis avidity on dead or alive cultured cells and performed SPECT and fluorescence imaging of both spontaneous and treatment-induced necrosis in murine breast cancer models. We simultaneously recorded [ <sup>18</sup> F]FDG-PET and bioluminescence images for complementary detection of tumor viability. We generated two albumin-binding IRDye800CW derivatives which were labeled with indium-111 with high radiochemical purity. Surprisingly, both albumin-binding NACAs had >10x higher in vitro binding towards dead cells. We selected [ <sup>111</sup> In]3 for in vivo experiments which showed higher dead cell binding in vitro and in vivo stability. The doxorubicin-treated tumors showed increased [ <sup>111</sup> In]3-uptake (1.74 ± 0.08%ID/g after saline treatment, 2.25 ± 0.16%ID/g after doxorubicin treatment, p = 0.044) and decreased [ <sup>18</sup> F]FDG-uptake (3.02 ± 0.51%ID/g after saline treatment, 1.79 ± 0.11%ID/g after doxorubicin treatment, p = 0.040), indicating therapy efficacy. Moreover, we detected increased [ <sup>111</sup> In]3-uptake and tumor necrosis in more rapidly growing EMT6 tumors. Our albumin-binding NACA based on IRDye800CW facilitates tumor-necrosis imaging for assessment of therapy efficacy and aggressiveness in solid tumors using both fluorescence and SPECT imaging

    In Vivo Evaluation of Gallium-68-Labeled IRDye800CW as a Necrosis Avid Contrast Agent in Solid Tumors.

    Get PDF
    Necrosis only occurs in pathological situations and is directly related to disease severity and, therefore, is an important biomarker. Tumor necrosis occurs in most solid tumors due to improperly functioning blood vessels that cannot keep up with the rapid growth, especially in aggressively growing tumors. The amount of necrosis per tumor volume is often correlated to rapid tumor proliferation and can be used as a diagnostic tool. Furthermore, efficient therapy against solid tumors will directly or indirectly lead to necrotic tumor cells, and detection of increased tumor necrosis can be an early marker for therapy efficacy. We propose the application of necrosis avid contrast agents to detect therapy-induced tumor necrosis. Herein, we advance gallium-68-labeled IRDye800CW, a near-infrared fluorescent dye that exhibits excellent necrosis avidity, as a potential PET tracer for in vivo imaging of tumor necrosis. We developed a reliable labeling procedure to prepare [ <sup>68</sup> Ga]Ga-DOTA-PEG <sub>4</sub> -IRDye800CW ([ <sup>68</sup> Ga]Ga-1) with a radiochemical purity of >96% (radio-HPLC). The prominent dead cell binding of fluorescence and radioactivity from [ <sup>68</sup> Ga]Ga-1 was confirmed with dead and alive cultured 4T1-Luc2 cells. [ <sup>68</sup> Ga]Ga-1 was injected in 4T1-Luc2 tumor-bearing mice, and specific fluorescence and PET signal were observed in the spontaneously developing tumor necrosis. The ip injection of D-luciferin enabled simultaneous bioluminescence imaging of the viable tumor regions. Tumor necrosis binding was confirmed ex vivo by colocalization of fluorescence uptake with TUNEL dead cell staining and radioactivity uptake in dichotomized tumors and frozen tumor sections. Our presented study shows that [ <sup>68</sup> Ga]Ga-1 is a promising PET tracer for the detection of tumor necrosis

    Real-time fluorescence imaging in intraoperative decision making for cancer surgery.

    No full text
    Fluorescence-guided surgery is an intraoperative optical imaging method that provides surgeons with real-time guidance for the delineation of tumours. Currently, in phase 1 and 2 clinical trials, evaluation of fluorescence-guided surgery is primarily focused on its diagnostic performance, although the corresponding outcome variables do not inform about the added clinical benefit of fluorescence-guided surgery and are challenging to assess objectively. Nonetheless, the effect of fluorescence-guided surgery on intraoperative decision making is the most objective outcome measurement to assess the clinical value of this imaging method. In this Review, we explore the study designs of existing trials of fluorescence-guided surgery that allow us to extract information on potential changes in intraoperative decision making, such as additional or more conservative resections. On the basis of this analysis, we offer recommendations on how to report changes in intraoperative decision making that result from fluorescence imaging, which is of utmost importance for the widespread clinical implementation of fluorescence-guided surgery
    corecore