24 research outputs found

    Deployment of ACT antimalarials for treatment of malaria: challenges and opportunities

    Get PDF
    Following a long period when the effectiveness of existing mono-therapies for antimalarials was steadily declining with no clear alternative, most malaria-endemic countries in Africa and Asia have adopted artemisinin combination therapy (ACT) as antimalarial drug policy. Several ACT drugs exist and others are in the pipeline. If properly targeted, they have the potential to reduce mortality from malaria substantially. The major challenge now is to get the drugs to the right people. Current evidence suggests that most of those who need the drugs do not get them. Simultaneously, a high proportion of those who are given antimalarials do not in fact have malaria. Financial and other barriers mean that, in many settings, the majority of those with malaria, particularly the poorest, do not access formal healthcare, so the provision of free antimalarials via this route has only limited impact. The higher cost of ACT creates a market for fake drugs. Addressing these problems is now a priority. This review outlines current evidence, possible solutions and research priorities

    Determining the affinity and stoichiometry of interactions between unmodified proteins in solution using Biacore

    No full text
    We describe a general Biacore method for measuring equilibrium binding affinities and stoichiometries for interactions between unmodified proteins and their unmodified ligands free in solution. Mixtures of protein and ligand are preequilibrated at different ratios in solution and then analyzed by Biacore using a sensor chip surface that detects only unbound analyte. Performing the Biacore analysis under mass transport limited conditions allows the concentration of unbound analyte to be determined from the initial velocity of binding. Plots of initial velocity versus the concentration of the varied binding partner are fitted to a quadratic binding equation to give the affinity and stoichiometry of binding. We demonstrate the method using soluble Her2 extracellular domain binding to monovalent, bivalent, and trivalent forms of an anti-Her2 antibody. The affinity we measured agrees with that obtained from conventional Biacore kinetic analysis, and the stoichiometries for the resulting 1:1, 1:2, and 1:3 complexes were confirmed by gel filtration with in-line light scattering. The method is applicable over an affinity range of approximately 100 pM to 1 muM and is particularly useful when there is concern that covalently modifying one or the other binding partner might affect its binding properties or where multivalency might otherwise complicate a quantitative analysis of binding. 2013 Elsevier In
    corecore