5 research outputs found

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Analytics in Microfluidic Systems

    No full text
    Viefhues M. Analytics in Microfluidic Systems. In: Advances in Biochemical Engineering/Biotechnology. Berlin ; Heidelberg: Springer ; 2020.Microfluidic analysis proved to be very sufficient in supporting biotechnological studies. This is due to the wide range of new analysis methods that provide further insight into biotechnological questions but also to intrinsic advantages of the systems themselves. To name two of them, only very small sample amounts are needed, and the analytics are very fast. In this overview paper, microfluidic analysis methods are introduced with a special focus on electric analysis methods. The aim of this work is to shed light on the special advantages of miniaturized electrical analysis in microfluidics; the main theoretical aspects of the methods are given together with the potential scientific insight that can be gained by the respective methods
    corecore