354 research outputs found

    The rate of cellular hydrogen peroxide removal shows dependency on GSH: Mathematical insight into in vivo H2O2 and GPx concentrations

    Get PDF
    Although its concentration is generally not known, glutathione peroxidase-1 (GPx-1) is a key enzyme in the removal of hydrogen peroxide (H2O2) in biological systems. Extrapolating from kinetic results obtained in vitro using dilute, homogenous buffered solutions, it is generally accepted that the rate of elimination of H2O2 in vivo by GPx is independent of glutathione concentration (GSH). To examine this doctrine, a mathematical analysis of a kinetic model for the removal of H2O2 by GPx was undertaken to determine how the reaction species (H2O2, GSH, and GPx-1) influence the rate of removal of H2O2. Using both the traditional kinetic rate law approximation (classical model) and the generalized kinetic expression, the results show that the rate of removal of H2O2 increases with initial GPxr, as expected, but is a function of both GPxr and GSH when the initial GPxr is less than H2O2. This simulation is supported by the biological observations of Li et al.. Using genetically altered human glioma cells in in vitro cell culture and in an in vivo tumour model, they inferred that the rate of removal of H2O2 was a direct function of GPx activity × GSH (effective GPx activity). The predicted cellular average GPxr and H2O2 for their study are approximately GPxr ≤ 1 μm and H2O2 ≈ 5 μm based on available rate constants and an estimation of GSH. It was also found that results from the accepted kinetic rate law approximation significantly deviated from those obtained from the more generalized model in many cases that may be of physiological importance

    Patient-reported outcome measures for cancer caregivers: a systematic review

    Get PDF
    Purpose Informal caregivers provide invaluable help and support to people with cancer. As treatments extend survival and the potential burdens on carers increase, there is a need to assess the impact of the role. This systematic review identified instruments that measure the impact of caregiving, evaluated their psychometric performance specifically in cancer and appraised the content. Methods A 2-stage search strategy was employed to: 1. identify instruments that measure the impact of caregiving, 2. run individual searches on each measure to identify publications evaluating psychometric performance in the target population. Searches were conducted in Medline, Embase, CINAHL and Psychinfo and restricted to English for instrument used and article language. Psychometric performance was evaluated for content and construct validity, internal consistency, test-retest reliability, precision, responsiveness and acceptability. Individual scale items were extracted and systematically categorised into conceptual domains. Results 10 papers were included reporting on the psychometric properties of 8 measures. Although construct validity and internal consistency were most frequently evaluated, no study comprehensively evaluated all relevant properties. Few studies met our inclusion criteria so it was not possible to consider the psychometric performance of the measures across a group of studies. Content analysis resulted in 16 domains with 5 overarching themes: lifestyle disruption; wellbeing; health of the caregiver; managing the situation and relationships. Conclusions Few measures of caregiver impact have been subject to psychometric evaluation in cancer caregivers. Those that have do not capture well changes in roles and responsibilities within the family and career, indicating the need for a new instrument

    Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The acellular fraction of epithelial ovarian cancer (EOC) ascites promotes <it>de novo </it>resistance of tumor cells and thus supports the idea that tumor cells may survive in the surrounding protective microenvironment contributing to disease recurrence. Levels of the pro-inflammatory cytokines IL-6 and IL-8 are elevated in EOC ascites suggesting that they could play a role in tumor progression.</p> <p>Methods</p> <p>We measured IL-6 and IL-8 levels in the ascites of 39 patients with newly diagnosed EOC. Commercially available enzyme-linked immunosorbent assay (ELISA) was used to determine IL-6 and IL-8 ascites levels. Ascites cytokine levels were correlated with clinicopathological parameters and progression-free survival.</p> <p>Results</p> <p>Mean ascites levels for IL-6 and IL-8 were 6419 pg/ml (SEM: 1409 pg/ml) and 1408 pg/ml (SEM: 437 pg/ml) respectively. The levels of IL-6 and IL-8 in ascites were significantly lower in patients that have received prior chemotherapy before the surgery (Mann-Whitney U test, <it>P </it>= 0.037 for IL-6 and <it>P </it>= 0.008 for IL-8). Univariate analysis revealed that high IL-6 ascites levels (<it>P </it>= 0.021), serum CA125 levels (<it>P </it>= 0.04) and stage IV (<it>P </it>= 0.009) were significantly correlated with shorter progression-free survival. Including these variables in a multivariate analysis revealed that elevated IL-6 levels (<it>P </it>= 0.033) was an independent predictor of shorter progression-free survival.</p> <p>Conclusion</p> <p>Elevated IL-6, but not IL-8, ascites level is an independent predictor of shorter progression-free survival.</p

    A Dual Receptor Crosstalk Model of G-Protein-Coupled Signal Transduction

    Get PDF
    Macrophage cells that are stimulated by two different ligands that bind to G-protein-coupled receptors (GPCRs) usually respond as if the stimulus effects are additive, but for a minority of ligand combinations the response is synergistic. The G-protein-coupled receptor system integrates signaling cues from the environment to actuate cell morphology, gene expression, ion homeostasis, and other physiological states. We analyze the effects of the two signaling molecules complement factors 5a (C5a) and uridine diphosphate (UDP) on the intracellular second messenger calcium to elucidate the principles that govern the processing of multiple signals by GPCRs. We have developed a formal hypothesis, in the form of a kinetic model, for the mechanism of action of this GPCR signal transduction system using data obtained from RAW264.7 macrophage cells. Bayesian statistical methods are employed to represent uncertainty in both data and model parameters and formally tie the model to experimental data. When the model is also used as a tool in the design of experiments, it predicts a synergistic region in the calcium peak height dose response that results when cells are simultaneously stimulated by C5a and UDP. An analysis of the model reveals a potential mechanism for crosstalk between the Gαi-coupled C5a receptor and the Gαq-coupled UDP receptor signaling systems that results in synergistic calcium release

    An automated Raman-based platform for the sorting of live cells by functional properties

    Get PDF
    Stable-isotope probing is widely used to study the function of microbial taxa in their natural environment, but sorting of isotopically labelled microbial cells from complex samples for subsequent genomic analysis or cultivation is still in its early infancy. Here, we introduce an optofluidic platform for automated sorting of stable-isotope-probing-labelled microbial cells, combining microfluidics, optical tweezing and Raman microspectroscopy, which yields live cells suitable for subsequent single-cell genomics, mini-metagenomics or cultivation. We describe the design and optimization of this Raman-activated cell-sorting approach, illustrate its operation with four model bacteria (two intestinal, one soil and one marine) and demonstrate its high sorting accuracy (98.3 ± 1.7%), throughput (200-500 cells h-1; 3.3-8.3 cells min-1) and compatibility with cultivation. Application of this sorting approach for the metagenomic characterization of bacteria involved in mucin degradation in the mouse colon revealed a diverse consortium of bacteria, including several members of the underexplored family Muribaculaceae, highlighting both the complexity of this niche and the potential of Raman-activated cell sorting for identifying key players in targeted processes.</p

    Neonatal cerebrovascular autoregulation.

    Get PDF
    Cerebrovascular pressure autoregulation is the physiologic mechanism that holds cerebral blood flow (CBF) relatively constant across changes in cerebral perfusion pressure (CPP). Cerebral vasoreactivity refers to the vasoconstriction and vasodilation that occur during fluctuations in arterial blood pressure (ABP) to maintain autoregulation. These are vital protective mechanisms of the brain. Impairments in pressure autoregulation increase the risk of brain injury and persistent neurologic disability. Autoregulation may be impaired during various neonatal disease states including prematurity, hypoxic-ischemic encephalopathy (HIE), intraventricular hemorrhage, congenital cardiac disease, and infants requiring extracorporeal membrane oxygenation (ECMO). Because infants are exquisitely sensitive to changes in cerebral blood flow (CBF), both hypoperfusion and hyperperfusion can cause significant neurologic injury. We will review neonatal pressure autoregulation and autoregulation monitoring techniques with a focus on brain protection. Current clinical therapies have failed to fully prevent permanent brain injuries in neonates. Adjuvant treatments that support and optimize autoregulation may improve neurologic outcomes
    corecore