26 research outputs found

    Synthesized grain size distribution in the interstellar medium

    Get PDF
    We examine a synthetic way of constructing the grain size distribution in the interstellar medium (ISM). First we formulate a synthetic grain size distribution composed of three grain size distributions processed with the following mechanisms that govern the grain size distribution in the Milky Way: (i) grain growth by accretion and coagulation in dense clouds, (ii) supernova shock destruction by sputtering in diffuse ISM, and (iii) shattering driven by turbulence in diffuse ISM. Then, we examine if the observational grain size distribution in the Milky Way (called MRN) is successfully synthesized or not. We find that the three components actually synthesize the MRN grain size distribution in the sense that the deficiency of small grains by (i) and (ii) is compensated by the production of small grains by (iii). The fraction of each {contribution} to the total grain processing of (i), (ii), and (iii) (i.e., the relative importance of the three {contributions} to all grain processing mechanisms) is 30-50%, 20-40%, and 10-40%, respectively. We also show that the Milky Way extinction curve is reproduced with the synthetic grain size distributions.Comment: 10 pages, 6 figures, accepted for publication in Earth, Planets, and Spac

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed

    Earliest rock fabric formed in the Solar System preserved in a chondrule rim

    Get PDF
    Rock fabrics – the preferred orientation of grains – provide a window into the history of rock formation, deformation and compaction. Chondritic meteorites are among the oldest materials in the Solar System1 and their fabrics should record a range of processes occurring in the nebula and in asteroids, but due to abundant fine-grained material these samples have largely resisted traditional in situ fabric analysis. Here we use high resolution electron backscatter diffraction to map the orientation of sub-micrometre grains in the Allende CV carbonaceous chondrite: the matrix material that is interstitial to the mm-sized spherical chondrules that give chondrites their name, and fine-grained rims which surround those chondrules. Although Allende matrix exhibits a bulk uniaxial fabric relating to a significant compressive event in the parent asteroid, we find that fine-grained rims preserve a spherically symmetric fabric centred on the chondrule. We define a method that quantitatively relates fabric intensity to net compression, and reconstruct an initial porosity for the rims of 70-80% - a value very close to model estimates for the earliest uncompacted aggregates2,3. We conclude that the chondrule rim textures formed in a nebula setting and may therefore be the first rock fabric to have formed in the Solar System

    Pressure-temperature evolution of primordial solar system solids during impact-induced compaction

    Get PDF
    Prior to becoming chondritic meteorites, primordial solids were a poorly consolidated mix of mm-scale igneous inclusions (chondrules) and high-porosity sub-μm dust (matrix). We used high-resolution numerical simulations to track the effect of impact-induced compaction on these materials. Here we show that impact velocities as low as 1.5 km s−1 were capable of heating the matrix to >1,000 K, with pressure–temperature varying by >10 GPa and >1,000 K over ~100 μm. Chondrules were unaffected, acting as heat-sinks: matrix temperature excursions were brief. As impact-induced compaction was a primary and ubiquitous process, our new understanding of its effects requires that key aspects of the chondrite record be re-evaluated: palaeomagnetism, petrography and variability in shock level across meteorite groups. Our data suggest a lithification mechanism for meteorites, and provide a ‘speed limit’ constraint on major compressive impacts that is inconsistent with recent models of solar system orbital architecture that require an early, rapid phase of main-belt collisional evolution

    The direction of research into visual disability and quality of life in glaucoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glaucoma will undoubtedly impact on a person's ability to function as they go about their day-to-day life. The purpose of this study is to investigate the amount of published knowledge in quality of life (QoL) and visual disability studies for glaucoma, and make comparisons with similar research in other chronic conditions.</p> <p>Methods</p> <p>A systematic literature search of the Global Health, EMBASE Psychiatry and MEDLINE databases. Title searches for glaucoma and six other example chronic diseases were entered alongside a selection of keywords chosen to capture studies focusing on QoL and everyday task ability. These results were further filtered during a manual search of resulting abstracts. Outcomes were the number of publications per year for each disease, number relating to QoL and type of glaucoma QoL research.</p> <p>Results</p> <p>Fifteen years ago there were no published studies relating to the impact of glaucoma on QoL but by 2009 this had risen to 1.2% of all glaucoma articles. The number of papers relating to QoL as a proportion of all papers in glaucoma in the past 10 years (0.6%) is smaller than for AMD and some other disabling chronic diseases. Most QoL studies in glaucoma (82%) involve questionnaires.</p> <p>Conclusion</p> <p>QoL studies in glaucoma are increasing in number but represent a tiny minority of the total publications in glaucoma research. There are fewer QoL articles in glaucoma compared to some other disabling chronic conditions. The majority of QoL articles in glaucoma research use questionnaires; performance-based measures of visual disability may offer an additional method of determining how the disease impacts on QoL.</p

    Physical health behaviours and health locus of control in people with schizophrenia-spectrum disorder and bipolar disorder: a cross-sectional comparative study with people with non-psychotic mental illness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>People with mental illness experience high levels of morbidity and mortality from physical disease compared to the general population. Our primary aim was to compare how people with severe mental illness (SMI; i.e. schizophrenia-spectrum disorders and bipolar disorder) and non-psychotic mental illness perceive their: (i) global physical health, (ii) barriers to improving physical health, (iii) physical health with respect to important aspects of life and (iv) motivation to change modifiable high-risk behaviours associated with coronary heart disease. A secondary aim was to determine health locus of control in these two groups of participants.</p> <p>Methods</p> <p>People with SMI and non-psychotic mental illness were recruited from an out-patient adult mental health service in London. Cross-sectional comparison between the two groups was conducted by means of a self-completed questionnaire.</p> <p>Results</p> <p>A total of 146 people participated in the study, 52 with SMI and 94 with non-psychotic mental illness. There was no statistical difference between the two groups with respect to the perception of global physical health. However, physical health was considered to be a less important priority in life by people with SMI (OR 0.5, 95% CI 0.2-0.9, <it>p </it>= 0.029). There was no difference between the two groups in their desire to change high risk behaviours. People with SMI are more likely to have a health locus of control determined by powerful others (<it>p </it>< 0.001) and chance (<it>p </it>= 0.006).</p> <p>Conclusions</p> <p>People with SMI appear to give less priority to their physical health needs. Health promotion for people with SMI should aim to raise awareness of modifiable high-risk lifestyle factors. Findings related to locus of control may provide a theoretical focus for clinical intervention in order to promote a much needed behavioural change in this marginalised group of people.</p

    The Four-Dimensional Symptom Questionnaire (4DSQ): a validation study of a multidimensional self-report questionnaire to assess distress, depression, anxiety and somatization

    Get PDF
    BACKGROUND: The Four-Dimensional Symptom Questionnaire (4DSQ) is a self-report questionnaire that has been developed in primary care to distinguish non-specific general distress from depression, anxiety and somatization. The purpose of this paper is to evaluate its criterion and construct validity. METHODS: Data from 10 different primary care studies have been used. Criterion validity was assessed by comparing the 4DSQ scores with clinical diagnoses, the GPs' diagnosis of any psychosocial problem for Distress, standardised psychiatric diagnoses for Depression and Anxiety, and GPs' suspicion of somatization for Somatization. ROC analyses and logistic regression analyses were used to examine the associations. Construct validity was evaluated by investigating the inter-correlations between the scales, the factorial structure, the associations with other symptom questionnaires, and the associations with stress, personality and social functioning. The factorial structure of the 4DSQ was assessed through confirmatory factor analysis (CFA). The associations with other questionnaires were assessed with Pearson correlations and regression analyses. RESULTS: Regarding criterion validity, the Distress scale was associated with any psychosocial diagnosis (area under the ROC curve [AUC] 0.79), the Depression scale was associated with major depression (AUC = 0.83), the Anxiety scale was associated with anxiety disorder (AUC = 0.66), and the Somatization scale was associated with the GPs' suspicion of somatization (AUC = 0.65). Regarding the construct validity, the 4DSQ scales appeared to have considerable inter-correlations (r = 0.35-0.71). However, 30–40% of the variance of each scale was unique for that scale. CFA confirmed the 4-factor structure with a comparative fit index (CFI) of 0.92. The 4DSQ scales correlated with most other questionnaires measuring corresponding constructs. However, the 4DSQ Distress scale appeared to correlate with some other depression scales more than the 4DSQ Depression scale. Measures of stress (i.e. life events, psychosocial problems, and work stress) were mainly associated with Distress, while Distress, in turn, was mainly associated with psychosocial dysfunctioning, including sick leave. CONCLUSION: The 4DSQ seems to be a valid self-report questionnaire to measure distress, depression, anxiety and somatization in primary care patients. The 4DSQ Distress scale appears to measure the most general, most common, expression of psychological problems

    Connecting Planetary Composition with Formation

    Full text link
    The rapid advances in observations of the different populations of exoplanets, the characterization of their host stars and the links to the properties of their planetary systems, the detailed studies of protoplanetary disks, and the experimental study of the interiors and composition of the massive planets in our solar system provide a firm basis for the next big question in planet formation theory. How do the elemental and chemical compositions of planets connect with their formation? The answer to this requires that the various pieces of planet formation theory be linked together in an end-to-end picture that is capable of addressing these large data sets. In this review, we discuss the critical elements of such a picture and how they affect the chemical and elemental make up of forming planets. Important issues here include the initial state of forming and evolving disks, chemical and dust processes within them, the migration of planets and the importance of planet traps, the nature of angular momentum transport processes involving turbulence and/or MHD disk winds, planet formation theory, and advanced treatments of disk astrochemistry. All of these issues affect, and are affected by the chemistry of disks which is driven by X-ray ionization of the host stars. We discuss how these processes lead to a coherent end-to-end model and how this may address the basic question.Comment: Invited review, accepted for publication in the 'Handbook of Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018). 46 pages, 10 figure

    Do automatic self-associations relate to suicidal ideation?

    Get PDF
    Dysfunctional self-schemas are assumed to play an important role in suicidal ideation. According to recent information-processing models, it is important to differentiate between 'explicit' beliefs and automatic associations. Explicit beliefs stem from the weighting of propositions and their corresponding 'truth' values, while automatic associations reflect more simple associations in memory. Both types of associations are assumed to have different functional properties and both may be involved in suicidal ideation. Thus far, studies into self-schemas and suicidal ideation focused on the more explicit, consciously accessible traces of self-schemas and predominantly relied on self-report questionnaires or interviews. To complement these 'explicit' findings and more directly tap into self-schemas, this study investigated automatic self-associations in a large scale community sample that was part of the Netherlands Study of Depression and Anxiety (NESDA). The results showed that automatic self-associations of depression and anxiety were indeed significantly related to suicidal ideation and past suicide attempt. Moreover, the interactions between automatic self-depressive (anxious) associations and explicit self-depressive (anxious) beliefs explained additional variance over and above explicit self-beliefs. Together these results provide an initial insight into one explanation of why suicidal patients might report difficulties in preventing and managing suicidal thoughts. © 2009 The Author(s)

    The ARCiS framework for exoplanet atmospheres: Modelling philosophy and retrieval

    No full text
    Aims. We present ARCiS, a novel code for the analysis of exoplanet transmission and emission spectra. The aim of the modelling framework is to provide a tool able to link observations to physical models of exoplanet atmospheres. Methods. The modelling philosophy chosen in this paper is to use physical and chemical models to constrain certain parameters while leaving certain parts of the model, where our physical understanding remains limited, free to vary. This approach, in between full physical modelling and full parameterisation, allows us to use the processes we understand well and parameterise those less understood. We implemented a Bayesian retrieval framework and applied it to the transit spectra of a set of ten hot Jupiters. The code contains chemistry and cloud formation and has the option for self-consistent temperature structure computations. Results. The code presented is fast and flexible enough to be used for retrieval and for target list simulations for JWST or the ESA Ariel missions for example. We present results for the retrieval of elemental abundance ratios using the physical retrieval framework and compare this to results obtained using a parameterised retrieval setup. Conclusions. We conclude that for most of the targets considered, their elemental abundance ratios cannot be reliably constrained based on the current dataset. We find no significant correlations between different physical parameters. We confirm that planets in our sample with a strong slope in the optical transmission spectrum are those for which we find cloud formation to be most active. Finally, we conclude that with ARCiS we have a computationally efficient tool to analyse exoplanet observations in the context of physical and chemical models
    corecore