455 research outputs found
An audit of changes in outcomes of acute pain service: evolution over the last two decades
link_to_OA_fulltex
Spectrum of mitochondrial diseases in a tertiary referral centre in Hong Kong
Session 7 - Mitochondrial Diseases: no. O27postprin
cis-Oxoruthenium complexes supported by chiral tetradentate amine (N4) ligands for hydrocarbon oxidations
published_or_final_versio
Factorization Properties of Soft Graviton Amplitudes
We apply recently developed path integral resummation methods to perturbative
quantum gravity. In particular, we provide supporting evidence that eikonal
graviton amplitudes factorize into hard and soft parts, and confirm a recent
hypothesis that soft gravitons are modelled by vacuum expectation values of
products of certain Wilson line operators, which differ for massless and
massive particles. We also investigate terms which break this factorization,
and find that they are subleading with respect to the eikonal amplitude. The
results may help in understanding the connections between gravity and gauge
theories in more detail, as well as in studying gravitational radiation beyond
the eikonal approximation.Comment: 35 pages, 5 figure
A study of cerebrospinal fluid neurotransmitters assay in children with undiagnosed neurological diseases in Hong Kong
postprintThe International Symposium on Epilepsy in Neurometabolic Diseases (ISENMD), Taipei, Taiwan, 26-28 March, 2010. In Proceedings of the International Symposium on Epilepsy in Neurometabolic Diseases, 2010, p. A82, abstract no. P4
Next-to-eikonal corrections to soft gluon radiation: a diagrammatic approach
We consider the problem of soft gluon resummation for gauge theory amplitudes
and cross sections, at next-to-eikonal order, using a Feynman diagram approach.
At the amplitude level, we prove exponentiation for the set of factorizable
contributions, and construct effective Feynman rules which can be used to
compute next-to-eikonal emissions directly in the logarithm of the amplitude,
finding agreement with earlier results obtained using path-integral methods.
For cross sections, we also consider sub-eikonal corrections to the phase space
for multiple soft-gluon emissions, which contribute to next-to-eikonal
logarithms. To clarify the discussion, we examine a class of log(1 - x) terms
in the Drell-Yan cross-section up to two loops. Our results are the first steps
towards a systematic generalization of threshold resummations to
next-to-leading power in the threshold expansion.Comment: 66 pages, 19 figure
Theory of Star Formation
We review current understanding of star formation, outlining an overall
theoretical framework and the observations that motivate it. A conception of
star formation has emerged in which turbulence plays a dual role, both creating
overdensities to initiate gravitational contraction or collapse, and countering
the effects of gravity in these overdense regions. The key dynamical processes
involved in star formation -- turbulence, magnetic fields, and self-gravity --
are highly nonlinear and multidimensional. Physical arguments are used to
identify and explain the features and scalings involved in star formation, and
results from numerical simulations are used to quantify these effects. We
divide star formation into large-scale and small-scale regimes and review each
in turn. Large scales range from galaxies to giant molecular clouds (GMCs) and
their substructures. Important problems include how GMCs form and evolve, what
determines the star formation rate (SFR), and what determines the initial mass
function (IMF). Small scales range from dense cores to the protostellar systems
they beget. We discuss formation of both low- and high-mass stars, including
ongoing accretion. The development of winds and outflows is increasingly well
understood, as are the mechanisms governing angular momentum transport in
disks. Although outstanding questions remain, the framework is now in place to
build a comprehensive theory of star formation that will be tested by the next
generation of telescopes.Comment: 120 pages, to appear in ARAA. No changes from v1 text; permission
statement adde
The holographic principle
There is strong evidence that the area of any surface limits the information
content of adjacent spacetime regions, at 10^(69) bits per square meter. We
review the developments that have led to the recognition of this entropy bound,
placing special emphasis on the quantum properties of black holes. The
construction of light-sheets, which associate relevant spacetime regions to any
given surface, is discussed in detail. We explain how the bound is tested and
demonstrate its validity in a wide range of examples.
A universal relation between geometry and information is thus uncovered. It
has yet to be explained. The holographic principle asserts that its origin must
lie in the number of fundamental degrees of freedom involved in a unified
description of spacetime and matter. It must be manifest in an underlying
quantum theory of gravity. We survey some successes and challenges in
implementing the holographic principle.Comment: 52 pages, 10 figures, invited review for Rev. Mod. Phys; v2:
reference adde
Star forming dwarf galaxies
Star forming dwarf galaxies (SFDGs) have a high gas content and low
metallicities, reminiscent of the basic entities in hierarchical galaxy
formation scenarios. In the young universe they probably also played a major
role in the cosmic reionization. Their abundant presence in the local volume
and their youthful character make them ideal objects for detailed studies of
the initial stellar mass function (IMF), fundamental star formation processes
and its feedback to the interstellar medium. Occasionally we witness SFDGs
involved in extreme starbursts, giving rise to strongly elevated production of
super star clusters and global superwinds, mechanisms yet to be explored in
more detail. SFDGs is the initial state of all dwarf galaxies and the relation
to the environment provides us with a key to how different types of dwarf
galaxies are emerging. In this review we will put the emphasis on the exotic
starburst phase, as it seems less important for present day galaxy evolution
but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy
Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon,
September 2010, Springer Verlag, in pres
- …