66 research outputs found

    S100A7, a Novel Alzheimer's Disease Biomarker with Non-Amyloidogenic α-Secretase Activity Acts via Selective Promotion of ADAM-10

    Get PDF
    Alzheimer's disease (AD) is the most common cause of dementia among older people. At present, there is no cure for the disease and as of now there are no early diagnostic tests for AD. There is an urgency to develop a novel promising biomarker for early diagnosis of AD. Using surface-enhanced laser desorption ionization-mass spectrometry SELDI-(MS) proteomic technology, we identified and purified a novel 11.7-kDa metal- binding protein biomarker whose content is increased in the cerebrospinal fluid (CSF) and in the brain of AD dementia subjects as a function of clinical dementia. Following purification and protein-sequence analysis, we identified and classified this biomarker as S100A7, a protein known to be involved in immune responses. Using an adenoviral-S100A7 expression system, we continued to examine the potential role of S100A7 in AD amyloid neuropathology in in vitro model of AD. We found that the expression of exogenous S100A7 in primary cortico-hippocampal neuron cultures derived from Tg2576 transgenic embryos inhibits the generation of β-amyloid (Aβ)1–42 and Aβ1–40 peptides, coincidental with a selective promotion of “non- amyloidogenic” α-secretase activity via promotion of ADAM (a disintegrin and metalloproteinase)-10. Finally, a selective expression of human S100A7 in the brain of transgenic mice results in significant promotion of α-secretase activity. Our study for the first time suggests that S100A7 may be a novel biomarker of AD dementia and supports the hypothesis that promotion of S100A7 expression in the brain may selectively promote α-secretase activity in the brain of AD precluding the generation of amyloidogenic peptides. If in the future we find that S1000A7 protein content in CSF is sensitive to drug intervention experimentally and eventually in the clinical setting, S100A7 might be developed as novel surrogate index (biomarker) of therapeutic efficacy in the characterization of novel drug agents for the treatment of AD

    Increased Neural Activity of a Mushroom Body Neuron Subtype in the Brains of Forager Honeybees

    Get PDF
    Honeybees organize a sophisticated society, and the workers transmit information about the location of food sources using a symbolic dance, known as ‘dance communication’. Recent studies indicate that workers integrate sensory information during foraging flight for dance communication. The neural mechanisms that account for this remarkable ability are, however, unknown. In the present study, we established a novel method to visualize neural activity in the honeybee brain using a novel immediate early gene, kakusei, as a marker of neural activity. The kakusei transcript was localized in the nuclei of brain neurons and did not encode an open reading frame, suggesting that it functions as a non-coding nuclear RNA. Using this method, we show that neural activity of a mushroom body neuron subtype, the small-type Kenyon cells, is prominently increased in the brains of dancer and forager honeybees. In contrast, the neural activity of the two mushroom body neuron subtypes, the small-and large-type Kenyon cells, is increased in the brains of re-orienting workers, which memorize their hive location during re-orienting flights. These findings demonstrate that the small-type Kenyon cell-preferential activity is associated with foraging behavior, suggesting its involvement in information integration during foraging flight, which is an essential basis for dance communication

    Stripping the Boss : The Powerful Role of Humor in the Egyptian Revolution 2011

    Get PDF
    The Egyptian Revolution 2011 has shaken the Arab world and stirred up Middle-East politics. Moreover, it caused a rush in political science and the neighboring disciplines, which had not predicted an event like this and now have troubles explaining it. While many things can be learned from the popular uprising, and from the limitations of previous scholarship, our focus will be on a moral resource, which has occasionally been noticed, but not sufficiently explored: the role of humor in keeping up the spirit of the Revolution. For eighteen days, protestors persevered at Liberation Square in Central Cairo, the epicenter of resistance; at times a few dozens, at times hundreds of thousands. What they did was to fight the terror of the regime, which reached absurd peaks during those days, with humor – successfully. We offer a social-functionalist account of the uprising, which includes behavioral as well as cultural levels of analysis, and illuminates how humorous means helped to achieve deadly serious goals. By reconstructing how Egyptians laughed themselves into democracy, we outline a social psychology of resistance, which uses humor both as a sword and a shield.Peer reviewe

    Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases

    Get PDF
    Aging is one of the most important biological processes and is a known risk factor for many age-related diseases in human. Studying age-related transcriptomic changes in tissues across the whole body can provide valuable information for a holistic understanding of this fundamental process. In this work, we catalogue age-related gene expression changes in nine tissues from nearly two hundred individuals collected by the Genotype-Tissue Expression (GTEx) project. In general, we find the aging gene expression signatures are very tissue specific. However, enrichment for some well-known aging components such as mitochondria biology is observed in many tissues. Different levels of cross-tissue synchronization of age-related gene expression changes are observed, and some essential tissues (e.g., heart and lung) show much stronger "co-aging" than other tissues based on a principal component analysis. The aging gene signatures and complex disease genes show a complex overlapping pattern and only in some cases, we see that they are significantly overlapped in the tissues affected by the corresponding diseases. In summary, our analyses provide novel insights to the co-regulation of age-related gene expression in multiple tissues; it also presents a tissue-specific view of the link between aging and age-related diseases

    HIP-70: a protein induced by estrogen in the brain and LH-RH in the pituitary

    No full text

    Validated analysis of mortality rates demonstrates distinct genetic mechanisms that influence lifespan.

    No full text
    A key goal of gerontology is to discover the factors that influence the rate of senescence, which in this context refers to the age-dependent acceleration of mortality, inversely related to the morality rate doubling time. In contrast factors that influence only initial mortality rate are thought to be less relevant to the fundamental processes of aging. To resolve these two determinants of mortality rate and lifespan, initial morality rate and rate of senescence are calculated using the Gompertz equation. Despite theoretical and empirical evidence that the Gompertz parameters are most consistently and reliably estimated by maximum-likelihood techniques, and somewhat less so by non-linear regression, many researchers continue to use linear regression on the log-transformed hazard rate. The present study compares these three methods in the analysis of several published studies. Estimates of the mortality rate parameters were then used to compare the theoretical values to the actual values of the following parameters: maximal lifespan, 50% survival times, variance in control groups and agreement with the distribution of deaths. These comparisons indicate that maximum-likelihood and non-linear regression estimates provide better estimates of mortality rate parameters than log-linear regression. Of particular interest, the improved estimates indicate that most genetic manipulations in mice that increase lifespan do so by decreasing initial mortality rate, not rate of senescence, whereas most genetic manipulations that decrease lifespan surprisingly do so by increasing the rate of senescence, not initial mortality rate

    An estradiol-induced protein synthesized in the ventral medial hypothalamus and transported to the midbrain central gray

    Full text link
    Estradiol (E2) facilitates the lordosis reflex that occurs in response to flank stimulation in female rats. Lordosis appears to be regulated in part by the synthesis of proteins in the ventral medial hypothalamus (VMH) that are transported to the midbrain central gray (MCG). We developed a strategy involving microinfusion of radioactive amino acids, followed by 2-dimensional gel electrophoresis, to identify proteins that may be regulated by E2 in the VMH and transported to the MCG. A mixture of 35S-methionine and 35S-cysteine (2:1, total 500–1000 microCi), suspended in 1 microliter PBS, was infused bilaterally into the VMH over a period of 2 hr into matched pairs of ovariectomized female rats, one of which was given a Silastic implant containing E2 at the beginning of infusion or 1 week earlier. The rats were sacrificed 12 hr after the end of infusion, and several brain regions were obtained by microdissection. Samples were analyzed by 2-dimensional gel electrophoresis, entailing isoelectric focusing in the first dimension and SDS-PAGE (molecular-weight separation) in the second dimension, followed by fluorography. We could routinely separate at least 250 spots. We consistently found a protein spot with an apparent molecular weight of 70 kDa, pI of about 5.9, which almost always appeared in the VMH and MCG of rats given E2 replacement but very rarely in samples from ovariectomized rats given no E2 replacement. A spot immediately acidic to this protein (70 kDa, pl about 5.8) appeared to vary inversely with this E2-induced protein.</jats:p
    corecore