14,465 research outputs found

    Thermal annealing of GaAs concentrator solar cells

    Get PDF
    Isochronal and isothermal annealing tests were performed on GaAs concentrator cells which were irradiated with electrons of various energies to fluences up to 1 x 10(exp 16) e/sq cm. The results include: (1) For cells irradiated with electrons from 0.7 to 2.3 MeV, recovery decreases with increasing electron energy. (2) As determined by the un-annealed fractions, isothermal and isochronal annealing produce the same recovery. Also, cells irradiated to 3 x 10(exp 15) or 1 x 10(exp 16) e/sq cm recover to similar un-annealed fractions. (3) Some significant annealing is being seen at 150 C although very long times are required

    Electrical characteristics of a free-burning direct-current argon arc operating between 90 and 563 kilowatts with two types of cathodes

    Get PDF
    The electrical characteristics of a high-power, long-lived, free-burning dc argon arc are presented. Empirical formulas relating voltage to current, electrode separation, and operating pressure are given for two types of cathodes: a typical point tip cathode and a cathode with a 1.27-cm-(0.5-in.-) diameter crater in the tip. Power was varied from 90 to 563 kW. A discussion of the cathode with the crater tip is given

    A comparison of the radiation tolerance characteristics of multijunction solar cells with series and voltage-matched configurations

    Get PDF
    The effect of series and voltage-matched configurations on the performance of multijunction solar cells in a radiation environment was investigated. It was found that the configuration of the multijunction solar cell can have a significant impact on its radiation tolerence characteristics

    Gauge covariance and the fermion-photon vertex in three- and four- dimensional, massless quantum electrodynamics

    Full text link
    In the quenched approximation, the gauge covariance properties of three vertex Ans\"{a}tze in the Schwinger-Dyson equation for the fermion self energy are analysed in three- and four- dimensional quantum electrodynamics. Based on the Cornwall-Jackiw-Tomboulis effective action, it is inferred that the spectral representation used for the vertex in the gauge technique cannot support dynamical chiral symmetry breaking. A criterion for establishing whether a given Ansatz can confer gauge covariance upon the Schwinger-Dyson equation is presented and the Curtis and Pennington Ansatz is shown to satisfy this constraint. We obtain an analytic solution of the Schwinger-Dyson equation for quenched, massless three-dimensional quantum electrodynamics for arbitrary values of the gauge parameter in the absence of dynamical chiral symmetry breaking.Comment: 17 pages, PHY-7143-TH-93, REVTE

    Design considerations for lunar base photovoltaic power systems

    Get PDF
    A survey was made of factors that may affect the design of photovoltaic arrays for a lunar base. These factors, which include the lunar environment and system design criteria, are examined. A photovoltaic power system design with a triangular array geometry is discussed and compared to a nuclear reactor power systems and a power system utilizing both nuclear and solar power sources

    High-energy neutrino fluxes from AGN populations inferred from X-ray surveys

    Get PDF
    High-energy neutrinos and photons are complementary messengers, probing violent astrophysical processes and structural evolution of the Universe. X-ray and neutrino observations jointly constrain conditions in active galactic nuclei (AGN) jets: their baryonic and leptonic contents, and particle production efficiency. Testing two standard neutrino production models for local source Cen A \citep{KT2008,BB2009}, we calculate the high-energy neutrino spectra of single AGN sources and derive the flux of high-energy neutrinos expected for the current epoch. Assuming that accretion determines both X-rays and particle creation, our parametric scaling relations predict neutrino yield in various AGN classes. We derive redshift-dependent number densities of each class, from {\it Chandra} and {\it Swift}/BAT X-ray luminosity functions \citep{SGB2008,ACS2009}. We integrate the neutrino spectrum expected from the cumulative history of AGN (correcting for cosmological and source effects, e.g. jet orientation and beaming). Both emission scenarios yield neutrino fluxes well above limits set by {\it IceCube} (by ∼4\sim 4--106×10^6 \times at 1 PeV, depending on the assumed jet models for neutrino production). This implies that: (i) Cen A might not be a typical neutrino source as commonly assumed; (ii) both neutrino production models overestimate the efficiency; (iii) neutrino luminosity scales with accretion power differently among AGN classes and hence does not follow X-ray luminosity universally; (iv) some AGN are neutrino-quiet (e.g. below a power threshold for neutrino production); (v) neutrino and X-ray emission have different duty cycles (e.g. jets alternate between baryonic and leptonic flows); or (vi) some combination of the above.Comment: 16 pages, 6 figures, 3 tables, accepted for publication in MNRA

    Decay widths of large-spin mesons from the non-critical string/gauge duality

    Full text link
    In this paper, we use the non-critical string/gauge duality to calculate the decay widths of large-spin mesons. Since it is believed that the string theory of QCD is not a ten dimensional theory, we expect that the non-critical versions of ten dimensional black hole backgrounds lead to better results than the critical ones. For this purpose we concentrate on the confining theories and consider two different six dimensional black hole backgrounds. We choose the near extremal AdS6 model and the near extremal KM model to compute the decay widths of large-spin mesons. Then, we present our results from these two non-critical backgrounds and compare them together with those from the critical models and experimental data.Comment: 21 pages and 3 figure

    Apollo 17 neutron stratigraphy — Sedimentation and mixing in the lunar regolith

    Get PDF
    We have measured shifts in the isotopic a bundances of Gd and Sm in soils from the Apollo 17 deep drill stem and calculated the neutron fluence from these measurements. The measurements show two well defined regions of nearly constant fluence: (1) a thick deep section with a very large neutron fluence, and (2) a thinner shallow region with a small fluence. This depth dependence is most plausibly described by a model of rapid accumulation in the last 100–200 m.y., the layered structure reflecting accumulations of isotopically homogeneous source material. This interpretation is compatible with a variety of other characteristics of the soils, including the spallation produced126Xe normalized to target element abundances. An alternative model of deposition, followed by irradiation without mixing, followed by shallow mixing will quantitatively describe the data. The model yields an age of 1.25 AE for the bottom of the drill stem. This model was rejected because of the implausible requirement that the soils from the drill stem be accumulated from a source of unirradiated material. The uniformity of various properties of soils provides criteria for defining major stratigraphic intervals in the drill stem which differ from those identified by the Preliminary Examination Team. Neutron fluences measured on shallow and deep soils from all lunar landing sites have been normalized to irradiation in an arbitrary standard chemical environment. We infer from histograms of the normalized fluences that there is a distinct difference in neutron fluence between shallow and deep samples which implies a general vertical stratification of neutron fluence in the lunar regolith. The regolith can be divided into three vertical regions: (1) a well mixed surface layer, ∼100 g cm^(−2) thick, with an average fluence of 2.3 × 10^(16) n cm^(−2), (2) a poorly mixed zone extending from 100 g cm^(−2) to at least 500 g cm^(−2) with an average fluence of 3.5 × 10^(16) n cm^(−2), and (3) a deep layer of lightly irradiated materials (<10^(16) n cm^(−2)). Analysis of this stratification, using a vertical mixing model, indicates that the probability of mixing to several hundred g cm^(−2) is comparable to the probability of mixing to several kg cm^(−2). This is in contrast to the depth-cratering rate models which have been inferred from crater size frequency distributions using a power law. Alternatively, this discrepancy can be resolved if the true ^(157)Gd capture rate is 1/3 of the value calculated by Lingenfelteret al. (1972). The most plausible interpretation is that vertical mixing models are not an adequate description of relatively rare deep cratering events which result in significant lateral heterogeneity and addition of unirradiated material to the lunar surface
    • …
    corecore