29 research outputs found
ESPRESSO: The next European exoplanet hunter
The acronym ESPRESSO stems for Echelle SPectrograph for Rocky Exoplanets and
Stable Spectroscopic Observations; this instrument will be the next VLT high
resolution spectrograph. The spectrograph will be installed at the
Combined-Coud\'e Laboratory of the VLT and linked to the four 8.2 m Unit
Telescopes (UT) through four optical Coud\'e trains. ESPRESSO will combine
efficiency and extreme spectroscopic precision. ESPRESSO is foreseen to achieve
a gain of two magnitudes with respect to its predecessor HARPS, and to improve
the instrumental radial-velocity precision to reach the 10 cm/s level. It can
be operated either with a single UT or with up to four UTs, enabling an
additional gain in the latter mode. The incoherent combination of four
telescopes and the extreme precision requirements called for many innovative
design solutions while ensuring the technical heritage of the successful HARPS
experience. ESPRESSO will allow to explore new frontiers in most domains of
astrophysics that require precision and sensitivity. The main scientific
drivers are the search and characterization of rocky exoplanets in the
habitable zone of quiet, nearby G to M-dwarfs and the analysis of the
variability of fundamental physical constants. The project passed the final
design review in May 2013 and entered the manufacturing phase. ESPRESSO will be
installed at the Paranal Observatory in 2016 and its operation is planned to
start by the end of the same year.Comment: 12 pages, figures included, accepted for publication in Astron. Nach
CUBES: a UV spectrograph for the future
In spite of the advent of extremely large telescopes in the UV/optical/NIR range, the current generation of 8-10m facilities is likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (>40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R>20,000, although a lower-resolution, sky-limited mode of R ~ 7,000 is also planned. CUBES will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the Phase B dedicated to detailed design and construction. First science operations are planned for 2028. In this paper, we briefly describe the CUBES project development and goals, the main science cases, the instrument design and the project organization and management
ELT high resolution spectrograph: phase-A software architecture study
High resolution spectroscopy has been considered of a primary importance to exploit the main scientific cases foreseen for ESO ELT, the Extremely Large Telescope, the future largest optical-infrared telescope in the world. In this context ESO commissioned a Phase-A feasibility study for the construction of a high resolution spectrograph for the ELT, tentatively named HIRES. The study, which lasted 1.5 years, started on March 2016 and was completed with a review phase held at Garching ESO headquarters with the aim to assess the scientific and technical feasibility of the proposed instrument. One of the main tasks of the study is the architectural design of the software covering all the aspects relevant to control an astronomical instrument: from observation preparation through instrument hardware and detectors control till data reduction and analysis. In this paper we present the outcome of the Phase-A study for the proposed HIRES software design highlighting its peculiarities, critical areas and performance aspects for the whole data flow. The End-toEnd simulator, a tool already capable of simulating HIRES end products and currently being used to drive some design decision, is also shortly described
Revisiting Proxima with ESPRESSO
We aim to confirm the presence of Proxima b using independent measurements
obtained with the new ESPRESSO spectrograph, and refine the planetary
parameters taking advantage of its improved precision. We analysed 63
spectroscopic ESPRESSO observations of Proxima taken during 2019. We obtained
radial velocity measurements with a typical radial velocity photon noise of 26
cm/s. We ran a joint MCMC analysis on the time series of the radial velocity
and full-width half maximum of the cross-correlation function to model the
planetary and stellar signals present in the data, applying Gaussian process
regression to deal with stellar activity. We confirm the presence of Proxima b
independently in the ESPRESSO data. The ESPRESSO data on its own shows Proxima
b at a period of 11.218 0.029 days, with a minimum mass of 1.29
0.13 Me. In the combined dataset we measure a period of 11.18427 0.00070
days with a minimum mass of 1.173 0.086 Me. We find no evidence of
stellar activity as a potential cause for the 11.2 days signal. We find some
evidence for the presence of a second short-period signal, at 5.15 days with a
semi-amplitude of merely 40 cm/s. If caused by a planetary companion, it would
correspond to a minimum mass of 0.29 0.08 Me. We find that the FWHM of
the CCF can be used as a proxy for the brightness changes and that its gradient
with time can be used to successfully detrend the radial velocity data from
part of the influence of stellar activity. The activity-induced radial velocity
signal in the ESPRESSO data shows a trend in amplitude towards redder
wavelengths. Velocities measured using the red end of the spectrograph are less
affected by activity, suggesting that the stellar activity is spot-dominated.
The data collected excludes the presence of extra companions with masses above
0.6 Me at periods shorter than 50 days.Comment: 25 pages, 26 figure
A precise architecture characterization of the Men planetary system
The bright star Men was chosen as the first target for a radial
velocity follow-up to test the performance of ESPRESSO, the new high-resolution
spectrograph at the ESO's Very-Large Telescope (VLT). The star hosts a
multi-planet system (a transiting 4 M planet at 0.07 au, and a
sub-stellar companion on a 2100-day eccentric orbit) which is
particularly appealing for a precise multi-technique characterization. With the
new ESPRESSO observations, that cover a time span of 200 days, we aim to
improve the precision and accuracy of the planet parameters and search for
additional low-mass companions. We also take advantage of new photometric
transits of Men c observed by TESS over a time span that overlaps with
that of the ESPRESSO follow-up campaign. We analyse the enlarged spectroscopic
and photometric datasets and compare the results to those in the literature. We
further characterize the system by means of absolute astrometry with Hipparcos
and Gaia. We used the spectra of ESPRESSO for an independent determination of
the stellar fundamental parameters. We present a precise characterization of
the planetary system around Men. The ESPRESSO radial velocities alone
(with typical uncertainty of 10 cm/s) allow for a precise retrieval of the
Doppler signal induced by Men c. The residuals show an RMS of 1.2 m/s,
and we can exclude companions with a minimum mass less than 2 M
within the orbit of Men c). We improve the ephemeris of Men c using
18 additional TESS transits, and in combination with the astrometric
measurements, we determine the inclination of the orbital plane of Men b
with high precision ( deg). This leads to the precise
measurement of its absolute mass M, and
shows that the planetary orbital planes are highly misaligned.Comment: Accepted for publication on A&
ESPRESSO@VLT -- On-sky performance and first results
ESPRESSO is the new high-resolution spectrograph of ESO's Very-Large
Telescope (VLT). It was designed for ultra-high radial-velocity precision and
extreme spectral fidelity with the aim of performing exoplanet research and
fundamental astrophysical experiments with unprecedented precision and
accuracy. It is able to observe with any of the four Unit Telescopes (UT) of
the VLT at a spectral resolving power of 140,000 or 190,000 over the 378.2 to
788.7 nm wavelength range, or with all UTs together, turning the VLT into a
16-m diameter equivalent telescope in terms of collecting area, while still
providing a resolving power of 70,000. We provide a general description of the
ESPRESSO instrument, report on the actual on-sky performance, and present our
Guaranteed-Time Observation (GTO) program with its first results. ESPRESSO was
installed on the Paranal Observatory in fall 2017. Commissioning (on-sky
testing) was conducted between December 2017 and September 2018. The instrument
saw its official start of operations on October 1st, 2018, but improvements to
the instrument and re-commissioning runs were conducted until July 2019. The
measured overall optical throughput of ESPRESSO at 550 nm and a seeing of 0.65
arcsec exceeds the 10% mark under nominal astro-climatic conditions. We
demonstrate a radial-velocity precision of better than 25 cm/s during one night
and 50 cm/s over several months. These values being limited by photon noise and
stellar jitter show that the performanceis compatible with an instrumental
precision of 10 cm/s. No difference has been measured across the UTs neither in
throughput nor RV precision. The combination of the large collecting telescope
area with the efficiency and the exquisite spectral fidelity of ESPRESSO opens
a new parameter space in RV measurements, the study of planetary atmospheres,
fundamental constants, stellar characterisation and many other fields.Comment: 26 pages, 28 figure