9,110 research outputs found

    Asteroseismic Theory of Rapidly Oscillating Ap Stars

    Get PDF
    This paper reviews some of the important advances made over the last decade concerning theory of roAp stars.Comment: 9 pages, 5 figure

    Generalised verification of the observer property in discrete event systems

    Get PDF
    The observer property is an important condition to be satisfied by abstractions of Discrete Event Systems (DES) models. This paper presents a generalised version of a previous algorithm which tests if an abstraction of a DES obtained through natural projection has the observer property. The procedure called OP-verifier II overcomes the limitations of the previously proposed verifier while keeping its computational complexity. Results are illustrated by a case study of a transfer line system

    Generalised verification of the observer property in discrete event systems

    Get PDF
    The observer property is an important condition to be satisfied by abstractions of Discrete Event Systems (DES) models. This paper presents a generalised version of a previous algorithm which tests if an abstraction of a DES obtained through natural projection has the observer property. The procedure called OP-verifier II overcomes the limitations of the previously proposed verifier while keeping its computational complexity. Results are illustrated by a case study of a transfer line system

    Verification of the observer property in discrete event systems

    Get PDF
    The observer property is an important condition to be satisfied by abstractions of Discrete Event System (DES) models. This technical note presents a new algorithm that tests if an abstraction of a DES obtained through natural projection has the observer property. The procedure, called OP-Verifier, can be applied to (potentially nondeterministic) automata, with no restriction on the existence of cycles of 'non-relevant' events. This procedure has quadratic complexity in the number of states. The performance of the algorithm is illustrated by a set of experiments

    Advanced treatment for arthritic diseases based on the capture and inactivation of interleukin-6 by biofunctionalized polymeric nanoparticles

    Get PDF
    Arthritic diseases, such as osteoarthritis and rheumatoid arthritis, are associated with synovium inflammation (synovitis). Several pro-inflammatory cytokines, especially tumor necrosis factor-α (TNFα) and interleukins (IL), are important mediators of inflammation and articular cartilage destruction, supporting a potential possibility of anticytokine therapy in these diseases. IL-6 is one of the key regulators of the inflammatory response. Thus, human monoclonal antibodies against IL-6 may prevent its action, and consequently reduce inflammation after intra-articular (IA) injection. Indeed, several clinical trials have already demonstrated positive outcomes over disease progression. Although these treatments are very attractive, they are associated with limited efficacy because of the rapid clearance of antibodies by the synovium. A solution to overcome this problem is using nanoparticles (NPs) as a substrate to protect and extend the action of the antibodies. Natural-derived polymers, like chitosan (Ch) and hyaluronic acid (HA), are biocompatible and biodegradable polysaccharides, being HA a natural component of the extracellular matrix of articular cartilage. Therefore, biodegradable polymeric NPs represent a good candidate for IA administration. In the present work we propose natural biodegradable polymeric NPs biofunctionalized with immobilized antibodies that selectively capture and inactivate the pro-inflammatory cytokine IL-6, reducing synovium inflammation. Ch-HA NPs were successfully prepared by polyelectrolyte complexation and further stabilized through carbodiimide chemistry (ethyl(dimethylaminopropyl) carbodiimide (EDC)/Nhydroxysuccinimide (NHS)). The particle size and zeta potential of the NPs were optimized. Stable NPs with 121.8 ± 2.4 of particle diameter, 0.11 ± 0.01 of polydispersity index and +25.12 ± 1.86 mV of zeta potential were produced with 0.25 mg/mL of initial polymers concentrations, at pH 5 and with 50/200 mM of EDC/NHS concentration. The anti-IL-6 antibody was immobilized at the surface of Ch-HA NPs. After determining the maximum antibody immobilization ability (7 µg/mL), the capacity to capture the recombinant IL-6 was evaluated. The efficacy was around 94-97%. Biological assays demonstrated not only the cytocompatibility of the produced NPs with human articular chondrocytes (hACs) (Fig 1) and human macrophages, but also the benefits of the capture and inactivation of IL-6 after stimulation with monocyte-derived macrophage conditioned medium. In conclusion, it is foreseeable that these NPs will overcome the limitations of the abovementioned treatments, since such NPs will increase the therapeutic efficacy due to their subcellular size, non-toxicity and high stability, being a promising approach for the local and sustained treatment of arthritic diseases.info:eu-repo/semantics/publishedVersio

    The fundamental parameters of the roAp star 10 Aql

    Full text link
    Due to the strong magnetic field and related abnormal surface layers existing in rapidly oscillating Ap stars, systematic errors are likely to be present when determining their effective temperatures, which potentially compromises asteroseismic studies of these pulsators. Using long-baseline interferometry, our goal is to determine accurate angular diameters of a number of roAp targets to provide a temperature calibration for these stars. We obtained interferometric observations of 10 Aql with the visible spectrograph VEGA at the CHARA array. We determined a limb-darkened angular diameter of 0.275+/-0.009 mas and deduced a linear radius of 2.32+/-0.09 R_sun. We estimated the star's bolometric flux and used it, in combination with its parallax and angular diameter, to determine the star's luminosity and effective temperature. For two data sets of bolometric flux we derived an effective temperature of 7800+/-170 K and a luminosity of 18+/-1 L_sun or of 8000+/-210 K and 19+/-2 L_sun. We used these fundamental parameters together with the large frequency separation to constrain the mass and the age of 10 Aql, using the CESAM stellar evolution code. Assuming a solar chemical composition and ignoring all kinds of diffusion and settling of elements, we obtained a mass of 1.92 M_sun and an age of 780 Gy or a mass of 1.95 M_sun and an age of 740 Gy, depending on the considered bolometric flux. For the first time, we managed to determine an accurate angular diameter for a star smaller than 0.3 mas and to derive its fundamental parameters. In particular, by only combining our interferometric data and the bolometric flux, we derived an effective temperature that can be compared to those derived from atmosphere models. Such fundamental parameters can help for testing the mechanism responsible for the excitation of the oscillations observed in the magnetic pulsating stars
    corecore