15,909 research outputs found

    A dynamical point of view of Quantum Information: entropy and pressure

    Full text link
    Quantum Information is a new area of research which has been growing rapidly since last decade. This topic is very close to potential applications to the so called Quantum Computer. In our point of view it makes sense to develop a more "dynamical point of view" of this theory. We want to consider the concepts of entropy and pressure for "stationary systems" acting on density matrices which generalize the usual ones in Ergodic Theory (in the sense of the Thermodynamic Formalism of R. Bowen, Y. Sinai and D. Ruelle). We consider the operator L\mathcal{L} acting on density matrices ρMN\rho\in \mathcal{M}_N over a finite NN-dimensional complex Hilbert space L(ρ):=i=1ktr(WiρWi)ViρVi,\mathcal{L}(\rho):=\sum_{i=1}^k tr(W_i\rho W_i^*)V_i\rho V_i^*, where WiW_i and ViV_i, i=1,2,...ki=1,2,...k are operators in this Hilbert space. L\mathcal{L} is not a linear operator. In some sense this operator is a version of an Iterated Function System (IFS). Namely, the Vi(.)Vi=:Fi(.)V_i\,(.)\,V_i^*=:F_i(.), i=1,2,...,ki=1,2,...,k, play the role of the inverse branches (acting on the configuration space of density matrices ρ\rho) and the WiW_i play the role of the weights one can consider on the IFS. We suppose that for all ρ\rho we have that i=1ktr(WiρWi)=1\sum_{i=1}^k tr(W_i\rho W_i^*)=1. A family W:={Wi}i=1,...,kW:=\{W_i\}_{i=1,..., k} determines a Quantum Iterated Function System (QIFS) FW\mathcal{F}_{W}, $\mathcal{F}_W=\{\mathcal{M}_N,F_i,W_i\}_{i=1,..., k}.

    A dynamical point of view of Quantum Information: Wigner measures

    Full text link
    We analyze a known version of the discrete Wigner function and some connections with Quantum Iterated Funcion Systems. This paper is a follow up of "A dynamical point of view of Quantum Information: entropy and pressure" by the same authors

    Accessing the Acceleration of the Universe with Sunyaev-Zel'dovich and X-ray Data from Galaxy Clusters

    Full text link
    By using exclusively the Sunyaev-Zel'dovich effect and X-ray surface brightness data from 25 galaxy clusters in the redshift range 0.023< z < 0.784 we access cosmic acceleration employing a kinematic description. Such result is fully independent on the validity of any metric gravity theory, the possible matter-energy contents filling the Universe, as well as on the SNe Ia Hubble diagram.Comment: 3 pages, 4 figures, To appear in the Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativit

    Are Galaxy Clusters Suggesting an Accelerating Universe?

    Full text link
    The present cosmic accelerating stage is discussed through a new kinematic method based on the Sunyaev- Zel'dovich effect (SZE) and X-ray surface brightness data from galaxy clusters. By using the SZE/X-ray data from 38 galaxy clusters in the redshift range 0.14z0.890.14 \leq z \leq 0.89 [Bonamente et al., Astrop. J. {\bf 647}, 25 (2006)] it is found that the present Universe is accelerating and that the transition from an earlier decelerating to a late time accelerating regime is relatively recent. The ability of the ongoing Planck satellite mission to obtain tighter constraints on the expansion history through SZE/X-ray angular diameters is also discussed. Our results are fully independent on the validity of any metric gravity theory, the possible matter- energy contents filling the Universe, as well as on the SNe Ia Hubble diagram from which the presenting accelerating stage was inferred.Comment: 6 pages, 6 figures, AIP Conf. Proc. Invisible Universe: Proceedings of the Conferenc

    Explaining operational modal analysis with data from an arch bridge

    Get PDF
    This tutorial paper aims to introduce the topic of operational modal analysis to non-specialists on the subject. First of all, it is stressed the relevance of this experimental technique particularly in the assessment of important civil infrastructure. Then, after a synthesis of required theoretical background, three of the most powerful algorithms for output-only modal identification are presented. The several steps of these identification procedures are illustrated with the processing of data collected on a concrete arch bridge with a span of 280 m. As the use of operational modal analysis in the context of structural health monitoring is a subject under active research, this theme is also introduced and briefly exemplified with data continuously recorded at the same bridge

    A Thermodynamic Formalism for density matrices in Quantum Information

    Full text link
    We consider new concepts of entropy and pressure for stationary systems acting on density matrices which generalize the usual ones in Ergodic Theory. Part of our work is to justify why the definitions and results we describe here are natural generalizations of the classical concepts of Thermodynamic Formalism (in the sense of R. Bowen, Y. Sinai and D. Ruelle). It is well-known that the concept of density operator should replace the concept of measure for the cases in which we consider a quantum formalism. We consider the operator Λ\Lambda acting on the space of density matrices MN\mathcal{M}_N over a finite NN-dimensional complex Hilbert space Λ(ρ):=i=1ktr(WiρWi)ViρVitr(ViρVi), \Lambda(\rho):=\sum_{i=1}^k tr(W_i\rho W_i^*)\frac{V_i\rho V_i^*}{tr(V_i\rho V_i^*)}, where WiW_i and ViV_i, i=1,2,...,ki=1,2,..., k are linear operators in this Hilbert space. In some sense this operator is a version of an Iterated Function System (IFS). Namely, the Vi(.)Vi=:Fi(.)V_i\,(.)\,V_i^*=:F_i(.), i=1,2,...,ki=1,2,...,k, play the role of the inverse branches (i.e., the dynamics on the configuration space of density matrices) and the WiW_i play the role of the weights one can consider on the IFS. In this way a family W:={Wi}i=1,...,kW:=\{W_i\}_{i=1,..., k} determines a Quantum Iterated Function System (QIFS). We also present some estimates related to the Holevo bound

    Urban Deforestation and Urban Development

    Get PDF
    This paper has developed a model of a single forest owner operating with perfect foresight in a dynamic open-city environment that allows for switching between alternative competing land uses (forest and urban use) at some point in the future. The model also incorporates external values of an even-aged standing forest in addition to the value of timber when it is harvested. Timber is exploited based on a multiple rotation model a la Faustmann with clear-cut harvesting. In contrast to previous models, our alternative land use to forest land is endogenous. Within this framework, we study the problem of the private owner as well as that of the social planner, when choosing the time to harvest, the time to convert land and the intensity of development. We also examine the extent to which the two-way linkage between urban development and forest management practices (timber production and provision of forest amenities) contributes to economic efficiency and improvements in non-market forest benefits. Finally, we consider policy options available to a regulator seeking to achieve improvements in efficiency including anti-sprawl policies (impact fees and density controls) and forest policies such a yield tax. Numerical simulations illustrate our analytical results. JEL codes:Deforestation, Urban Development, Forest Management Practices, Anti-Sprawl Policies, Yield Taxes
    corecore