46 research outputs found

    Lithographically Defined Cross-Linkable Top Coats for Nanomanufacturing with High-χ Block Copolymers

    Get PDF
    The directed self-assembly (DSA) of block copolymers (BCPs) is a powerful method for the manufacture of high-resolution features. Critical issues remain to be addressed for successful implementation of DSA, such as dewetting and controlled orientation of BCP domains through physicochemical manipulations at the BCP interfaces, and the spatial positioning and registration of the BCP features. Here, we introduce novel top-coat (TC) materials designed to undergo cross-linking reactions triggered by thermal or photoactivation processes. The cross-linked TC layer with adjusted composition induces a mechanical confinement of the BCP layer, suppressing its dewetting while promoting perpendicular orientation of BCP domains. The selection of areas of interest with perpendicular features is performed directly on the patternable TC layer via a lithography step and leverages attractive integration pathways for the generation of locally controlled BCP patterns and nanostructured BCP multilayers

    “Plasma/reactor walls interactions in advanced gate etching processes”

    No full text
    International audienc

    Miniaturisation des grilles de transistors (Etude de l'intérêt des plasmas pulsés)

    No full text
    L'industrie de la microélectronique s'appuie sur l'évolution constante de la miniaturisation des transistors. D'ici 2016, cette industrie atteindra le nœud technologique 16 nm dans lequel il faudra être capable de graver des structures de dimensions nanométrique ayant de très forts facteurs d'aspect. Cependant, les procédés de gravure actuels montrent de sérieuses limitations en termes de contrôle des profils et des dimensions critiques lorsqu'il faut graver de telles structures. Les problèmes rencontrés sont liés d'une part à des limitations intrinsèques des procédés plasmas et d'autre part à l'apparition de nouveaux phénomènes lorsque la dimension des structures à graver devient nanométrique. Dans le cadre de cette thèse, un nouveau mode de fonctionnement des sources à plasma est étudié pour développer des procédés de gravure adaptés aux prochaines générations de circuits intégrés : les plasmas modulés en impulsions courtes. Les premiers travaux réalisés s'appuient sur de puissantes techniques d'analyses du plasma (spectroscopie d'absorption VUV, sonde de flux ionique, analyseur électrostatique) dans le but de mettre en évidence l'impact des paramètres de la modulation en impulsion du plasma sur ses caractéristiques physicochimiques (flux et énergie des radicaux et des ions). Ces diagnostics ont tout d'abord permis de définir très clairement les conséquences de la modulation en impulsion du plasma sur les flux de radicaux réactifs qui bombardent le substrat : le rapport de cycle est LE paramètre clé pour contrôler la chimie du plasma car il permet de contrôler le taux de fragmentation du gaz par impact électronique. Dans un second temps, nous avons également démontré que dans les plasmas électronégatifs et pour une puissance RF de polarisation donnée, l'énergie des ions augmente lorsque le rapport de cycle diminue. Fort de ces connaissances fondamentales sur les plasmas, des analyses des surfaces (XPS, MEB, Raman ) ont permis de comprendre les mécanismes mis en jeux lors de l'interaction plasma- surface. Ainsi, il a été possible de développer des procédés de gravure pulsés pour plusieurs étapes de la grille de transistor (prétraitement HBr, gravure du Si-ARC, gravure du pSi). Les prétraitements HBr sont incontournables pour réduire la rugosité de bord de ligne de transistor. Lors de cette étape, une couche riche en carbone limite l'effet bénéfique des UV du plasma sur la diminution de la rugosité. Grâce à l'utilisation des plasmas pulsés, l'origine de cette couche a été mise en évidence : elle résulte du dépôt sur les motifs d'espèces carbonées non volatiles issues de la photolyse de la résine qui sont relâchées dans le plasma. Dans ce système bicouche, les contraintes de la couche carbonée dure vont se relaxer dans le volume mou de la résine par phénomène de buckling qui se traduit par une hausse de la rugosité de bord de ligne. Nous avons montré que cela peut être évité en minimisant l'épaisseur de cette couche, ce qui peut être obtenu notamment en pulsant le plasma. La gravure de la couche anti-réflective Si-ARC qui sert de masque dur et celle de la grille en poly Silicium reposent sur l'utilisation de plasmas fluorocarbonés. Mais dans ce type de plasma, la production de précurseurs pour la polymérisation est diminuée quand le plasma est pulsé, conduisant à une perte de sélectivité et d'anisotropie. Les plasmas synchronisés pulsés ne sont donc pas de bons candidats pour les étapes de gravure considérées. Pour pallier à ce problème, un autre mode de polarisation a été étudié : les plasmas pour lesquels seule la puissance de polarisation est pulsée. Dans le cas de la gravure du Si-ARC, il est possible d'obtenir des profils très anisotropes avec une sélectivité vis-à-vis de la résine nettement améliorée. Pour la gravure du Silicium, les effets d'ARDE ont pu être diminués tout en améliorant la sélectivité. Ces résultats sont très encourageants.Microelectronics industry is based on the continuous transistor downscaling. By the year 2016, the 16nm technological node would be achieved, so that structures with nanometric dimensions and high aspect ratio would have to be etch. However, traditional etching processes shows major limitations in terms of pattern profiles control and critical dimensions when such structures have to be etch. The encountered problems are related directly to intrinsic limitations of plasmas processes but also to the emergence of new phenomena s when the dimensions of structures to etch become nanometric. In the framework of this thesis, a new strategy to produce plasma has been evaluated to develop etching plasmas processes adapted to next integration circuit generations: the pulsed plasmas. Over a first phase, the impact of plasma pulsing parameters (frequency and duty cycle) on the plasma physico-chemical characteristics has been highlight. This has been achievable thanks to advanced plasma analyse techniques (VUV broad band absorption spectroscopy, ion flux probe, retarding electrical field analyser ) developed to allow time resolved measurements. For the neutral flux, diagnostics have revealed that duty cycle is THE key control knob to tune the plasma. Indeed, a low duty cycle leads to reduced parent gas fragmentation and thus a reduced chemical reactivity. On the other hand, in electronegative plasmas and for constant RF power, we have demonstrated that ion energy is considerably increased when the ions flux is decreased (i.e. when the duty cycle is decreased). Then, surface analyses (XPS, SEM, Raman spectroscopy ) brought out the mechanisms involved during the plasma-surface interaction. Deeper comprehension of impact of pulsing parameters enables to develop pulsed plasmas processes more easily. These works are focused on the top of the transistor gate and deal with the following steps: HBr cure, Si-ARC etching, poly-silicon etching. HBr cure is an essential pre-treatment of the 193 nm photoresist to decrease the Line Width Roughness (LWR) of transistor gate. During this step, a carbon rich layer is formed on the surface of the resist pattern and degrades the beneficial action of UV plasma light on LWR reduction. Thanks to use of pulsed plasmas, the origin of this carbon rich layer has been highlight: UV induced modifications in polymer bulk lead to outgassing of volatiles carbon-based products in the plasma. These carbon containing moieties are fragmented by electron impact dissociation reaction in the plasma, which create sticking carbon based precursors available for re-deposition on the resist patterns. The impact of this layer on the LWR and resist pattern reflow is studied, and a possible mechanical origin (i.e. buckling instabilities) is highlighted. Finally, we showed that the use of pulsed HBr curing plasma allows to reduce and control the thickness of the graphite-like layer and to obtain LWR reduction that are comparable to VUV treatment only. The Si-ARC layer, used as hard mask, and the poly-silicon gate etching are based on the use of fluorocarbon plasmas. However, in these plasmas, the production of radicals enable for the polymerisation is decreased when the duty cycle is reduced. It leads to loss of both anisotropy and selectivity. Synchronised pulsed plasmas are then not adapted to such etching processes. To overcome this problem, a new way to produce plasma has been studied: the ICP source power is maintained constant and only the bias power is pulsed. Regarding Si-ARC etching, very anisotropic profiles are obtained and the Si-ARC to resist selectivity is enhanced while pulsing the rf bias to the wafer. In the case of poly-silicon etching, the ARDE effects are significantly reduced while the selectivity regarding the oxide is improved. These results are very promising for the development of polymerising plasmas processes.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Vacuum ultraviolet-absorption spectroscopy and delocalized plasma-induced emission used for the species detection in a down-stream soft-etch plasma reactor

    No full text
    International audienceThe VUV-absorption spectroscopy (AS) and the emission spectroscopy (ES) from delocalized probe plasma, are implemented in the downstream chamber of a soft-etch industrial plasma reactor. A CCP plasma, running in the upper compartment in He/NF3/NH3/H2 mixtures at about one Torr, produces reactive species which flow through a shower head into a downstream chamber, where they can etch different µ-electronics materials: Si, SiO2, SiN,... The ES reveals the presence of F and H atoms, while the dissociation rates of NF3 and NH3 are deduced from the AS, as well as the density of HF molecules, produced by chemical chain-reactions between dissociation products of NF3, NH3 and H2

    Ion flux and ion distribution function measurements in synchronously pulsed inductively coupled plasmas

    No full text
    Changes in the ion flux and the time-averaged ion distribution functions are reported for pulsed, inductively coupled RF plasmas (ICPs) operated over a range of duty cycles. For helium and argon plasmas, the ion flux increases rapidly after the start of the RF pulse and after about 50 μs reaches the same steady state value as that in continuous ICPs. Therefore, when the plasma is pulsed at 1 kHz, the ion flux during the pulse has a value that is almost independent of the duty cycle. By contrast, in molecular electronegative chlorine/chlorosilane plasmas, the ion flux during the pulse reaches a steady state value that depends strongly on the duty cycle. This is because both the plasma chemistry and the electronegativity depend on the duty cycle. As a result, the ion flux is 15 times smaller in a pulsed 10% duty cycle plasma than in the continuous wave (CW) plasma. The consequence is that for a given synchronous RF biasing of a wafer-chuck, the ion energy is much higher in the pulsed plasma than it is in the CW plasma of chlorine/chlorosilane. Under these conditions, the wafer is bombarded by a low flux of very energetic ions, very much as it would in a low density, capacitively coupled plasma. Therefore, one can extend the operating range of ICPs through synchronous pulsing of the inductive excitation and capacitive chuck-bias, offering new means by which to control plasma etching

    Silicon etching in a pulsed HBr/O−2 plasma. II. Pattern transfer

    No full text
    International audienceThe strong impact of synchronized plasma pulsing on an HBr/O 2 silicon pattern etch process is studied with respect to the continuous process. This article focuses on blanket etch rates and a detailed analysis of the etched profiles, where several significant features of plasma pulsing are identified. First, the time compensated (TC) silicon etch rate is increased while the SiO 2 TC etch rate is decreased at a low duty cycle, whereby the selectivity between silicon and SiO 2 etching is strongly increased. Furthermore, the thickness of the sidewall passivation layer is reduced, thereby guiding the etched profile. Finally, the overall homogeneity is increased compared to the continuous wave etching process

    Broadband and time-resolved absorption spectroscopy with light emitting diodes: Application to etching plasma monitoring

    No full text
    International audienceBroad band absorption spectroscopy is widely used to measure the concentration of radicals, which is important to understand the physical chemistry of many plasmas. It is possible to increase the sensitivity of this technique and to perform time-resolved measurement by using light emitting diodes (LEDs) as a light source. The method is applied to detect CF2 radicals and Cl2 molecules in high density plasmas. The detection limit over 10ms integration time is as low as 3mTorr of Cl2. We conclude that the absorption spectroscopy with LEDs opens possibilities for precise process control and fundamental analysis of reactive media

    Time-resolved ion flux, electron temperature and plasma density measurements in a pulsed Ar plasma using a capacitively coupled planar probe

    No full text
    The resurgence of industrial interest in pulsed radiofrequency plasmas for etching applications highlights the fact that these plasmas are much less well characterized than their continuous wave counterparts. A capacitively coupled planar probe is used to determine the time variations of the ion flux, electron temperature (of the high-energy tail of the electron energy distribution function) and plasma density. For a pulsing frequency of 1 kHz or higher, the plasma never reaches a steady state during the on-time and is not fully extinguished during the off-time. The drop of plasma density during the off-time leads to an overshoot in the electron temperature at the beginning of each pulse, particularly at low frequencies, in good agreement with modeling results from the literature
    corecore