220 research outputs found

    Hubble Space Telescope Observations of cD Galaxies and their Globular Cluster Systems

    Full text link
    We have used WFPC2 on the Hubble Space Telescope to obtain F450W and F814W images of four cD galaxies (NGC 541 in Abell 194, NGC 2832 in Abell 779, NGC 4839 in Abell 1656 and NGC 7768 in Abell 2666) in the range 5400 < cz < 8100 km s^{-1}. For NGC 541, the HST data are supplemented by ground-based B and I images obtained with the FORS1 on the VLT. We present surface brightness and color profiles for each of the four galaxies, confirming their classification as cD galaxies. Isophotal analyses reveal the presence of subarcsecond-scale dust disks in the nuclei of NGC 541 and NGC 7768. Despite the extreme nature of these galaxies in terms of spatial extent and luminosity, our analysis of their globular cluster systems reveals no anomalies in terms of specific frequencies, metallicity gradients, average metallicities, or the metallicity offset between the globulars and the host galaxy. We show that the latter offset appears roughly constant at \Delta [Fe/H] ~ 0.8 dex for early-type galaxies spanning a luminosity range of roughly four orders of magnitude. We combine the globular cluster metallicity distributions with an empirical technique described in a series of earlier papers to investigate the form of the protogalactic mass spectrum in these cD galaxies. We find that the observed GC metallicity distributions are consistent with those expected if cD galaxies form through the cannibalism of numerous galaxies and protogalactic fragments which formed their stars and globular clusters before capture and disruption. However, the properties of their GC systems suggest that dynamical friction is not the primary mechanism by which these galaxies are assembled. We argue that cDs instead form rapidly, via hierarchical merging, prior to cluster virialization.Comment: 36 pages, 20 postscript figures, uses emulateapj. Accepted for publication in the Astronomical Journa

    A framework for automated enrichment of functionally significant inverted repeats in whole genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA transcripts from genomic sequences showing dyad symmetry typically adopt hairpin-like, cloverleaf, or similar structures that act as recognition sites for proteins. Such structures often are the precursors of non-coding RNA (ncRNA) sequences like microRNA (miRNA) and small-interfering RNA (siRNA) that have recently garnered more functional significance than in the past. Genomic DNA contains hundreds of thousands of such inverted repeats (IRs) with varying degrees of symmetry. But by collecting statistically significant information from a known set of ncRNA, we can sort these IRs into those that are likely to be functional.</p> <p>Results</p> <p>A novel method was developed to scan genomic DNA for partially symmetric inverted repeats and the resulting set was further refined to match miRNA precursors (pre-miRNA) with respect to their density of symmetry, statistical probability of the symmetry, length of stems in the predicted hairpin secondary structure, and the GC content of the stems. This method was applied on the <it>Arabidopsis thaliana</it> genome and validated against the set of 190 known Arabidopsis pre-miRNA in the miRBase database. A preliminary scan for IRs identified 186 of the known pre-miRNA but with 714700 pre-miRNA candidates. This large number of IRs was further refined to 483908 candidates with 183 pre-miRNA identified and further still to 165371 candidates with 171 pre-miRNA identified (i.e. with 90% of the known pre-miRNA retained).</p> <p>Conclusions</p> <p>165371 candidates for potentially functional miRNA is still too large a set to warrant wet lab analyses, such as northern blotting, on all of them. Hence additional filters are needed to further refine the number of candidates while still retaining most of the known miRNA. These include detection of promoters and terminators, homology analyses, location of candidate relative to coding regions, and better secondary structure prediction algorithms. The software developed is designed to easily accommodate such additional filters with a minimal experience in Perl.</p

    The Evolution of Gene Expression QTL in Saccharomyces cerevisiae

    Get PDF
    Understanding the evolutionary forces that influence patterns of gene expression variation will provide insights into the mechanisms of evolutionary change and the molecular basis of phenotypic diversity. To date, studies of gene expression evolution have primarily been made by analyzing how gene expression levels vary within and between species. However, the fundamental unit of heritable variation in transcript abundance is the underlying regulatory allele, and as a result it is necessary to understand gene expression evolution at the level of DNA sequence variation. Here we describe the evolutionary forces shaping patterns of genetic variation for 1206 cis-regulatory QTL identified in a cross between two divergent strains of Saccharomyces cerevisiae. We demonstrate that purifying selection against mildly deleterious alleles is the dominant force governing cis-regulatory evolution in S. cerevisiae and estimate the strength of selection. We also find that essential genes and genes with larger codon bias are subject to slightly stronger cis-regulatory constraint and that positive selection has played a role in the evolution of major trans-acting QTL

    Knowledge-based analysis of microarrays for the discovery of transcriptional regulation relationships

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The large amount of high-throughput genomic data has facilitated the discovery of the regulatory relationships between transcription factors and their target genes. While early methods for discovery of transcriptional regulation relationships from microarray data often focused on the high-throughput experimental data alone, more recent approaches have explored the integration of external knowledge bases of gene interactions.</p> <p>Results</p> <p>In this work, we develop an algorithm that provides improved performance in the prediction of transcriptional regulatory relationships by supplementing the analysis of microarray data with a new method of integrating information from an existing knowledge base. Using a well-known dataset of yeast microarrays and the Yeast Proteome Database, a comprehensive collection of known information of yeast genes, we show that knowledge-based predictions demonstrate better sensitivity and specificity in inferring new transcriptional interactions than predictions from microarray data alone. We also show that comprehensive, direct and high-quality knowledge bases provide better prediction performance. Comparison of our results with ChIP-chip data and growth fitness data suggests that our predicted genome-wide regulatory pairs in yeast are reasonable candidates for follow-up biological verification.</p> <p>Conclusion</p> <p>High quality, comprehensive, and direct knowledge bases, when combined with appropriate bioinformatic algorithms, can significantly improve the discovery of gene regulatory relationships from high throughput gene expression data.</p

    High-Frequency, Low-Magnitude Vibration Does Not Prevent Bone Loss Resulting from Muscle Disuse in Mice following Botulinum Toxin Injection

    Get PDF
    High-frequency, low-magnitude vibration enhances bone formation ostensibly by mimicking normal postural muscle activity. We tested this hypothesis by examining whether daily exposure to low-magnitude vibration (VIB) would maintain bone in a muscle disuse model with botulinum toxin type A (BTX). Female 16–18 wk old BALB/c mice (N = 36) were assigned to BTX-VIB, BTX-SHAM, VIB, or SHAM. BTX mice were injected with BTX (20 µL; 1 U/100 g body mass) into the left hindlimb posterior musculature. All mice were anaesthetized for 20 min/d, 5 d/wk, for 3 wk, and the left leg mounted to a holder. Through the holder, VIB mice received 45 Hz, ±0.6 g sinusoidal acceleration without weight bearing. SHAM mice received no vibration. At baseline and 3 wk, muscle cross-sectional area (MCSA) and tibial bone properties (epiphysis, metaphysis and diaphysis) were assessed by in vivo micro-CT. Bone volume fraction in the metaphysis decreased 12±9% and 7±6% in BTX-VIB and BTX-SHAM, but increased in the VIB and SHAM. There were no differences in dynamic histomorphometry outcomes between BTX-VIB and BTX nor between VIB and SHAM. Thus, vibration did not prevent bone loss induced by a rapid decline in muscle activity nor produce an anabolic effect in normal mice. The daily loading duration was shorter than would be expected from postural muscle activity, and may have been insufficient to prevent bone loss. Based on the approach used in this study, vibration does not prevent bone loss in the absence of muscle activity induced by BTX

    Ethnicity and gender related differences in extended intraesophageal pH monitoring parameters in infants: a retrospective study

    Get PDF
    BACKGROUND: Gastroesophageal reflux disease (GERD) is believed to be more common in adult males as compared to females. It also has been shown in adults to be more common in Caucasians. We wanted to determine ethnicity and gender related differences for extended pH monitoring parameters in infancy. METHODS: Extended pH monitoring data (EPM) from infants <1 year of age were reviewed. Results were classified in two groups, as control and Gastroesophageal reflux disease (GERD) group based on the reflux index (RI). The GERD group had RI of equal to or more than 5% of total monitoring period. The parameters of RI, total number of episodes of pH < 4, and the number of episodes with pH < 4 lasting more than 5 minutes were compared by genders and by ethnic groups, Caucasians and African American (AA). RESULTS: There were 569 infants, 388 controls, 181 with GERD (320 males, 249 females; 165 Caucasians, 375 AA). No statistical difference in EPM parameters was detected between genders in both groups. However, Caucasian infants had a significantly higher incidence of GERD than AA infants (p = 0.036). On stratifying by gender, Caucasian females had a significantly higher number of reflux episodes >5 minutes as compared to AA females in the control group (p = 0.05). Furthermore, Caucasian females with GERD showed an overall higher trend for all parameters. Caucasian males had a trend for higher mean number of reflux episodes as compared to AA males in the control group (p = 0.09). CONCLUSION: Although gender specific control data do not appear warranted in infants undergoing EPM, ethnic differences related to an overall increased incidence of pathologic GERD in Caucasian infants should be noted

    Partial Order Optimum Likelihood (POOL): Maximum Likelihood Prediction of Protein Active Site Residues Using 3D Structure and Sequence Properties

    Get PDF
    A new monotonicity-constrained maximum likelihood approach, called Partial Order Optimum Likelihood (POOL), is presented and applied to the problem of functional site prediction in protein 3D structures, an important current challenge in genomics. The input consists of electrostatic and geometric properties derived from the 3D structure of the query protein alone. Sequence-based conservation information, where available, may also be incorporated. Electrostatics features from THEMATICS are combined with multidimensional isotonic regression to form maximum likelihood estimates of probabilities that specific residues belong to an active site. This allows likelihood ranking of all ionizable residues in a given protein based on THEMATICS features. The corresponding ROC curves and statistical significance tests demonstrate that this method outperforms prior THEMATICS-based methods, which in turn have been shown previously to outperform other 3D-structure-based methods for identifying active site residues. Then it is shown that the addition of one simple geometric property, the size rank of the cleft in which a given residue is contained, yields improved performance. Extension of the method to include predictions of non-ionizable residues is achieved through the introduction of environment variables. This extension results in even better performance than THEMATICS alone and constitutes to date the best functional site predictor based on 3D structure only, achieving nearly the same level of performance as methods that use both 3D structure and sequence alignment data. Finally, the method also easily incorporates such sequence alignment data, and when this information is included, the resulting method is shown to outperform the best current methods using any combination of sequence alignments and 3D structures. Included is an analysis demonstrating that when THEMATICS features, cleft size rank, and alignment-based conservation scores are used individually or in combination THEMATICS features represent the single most important component of such classifiers

    Chemokines in cerebrospinal fluid correlate with cerebral metabolite patterns in HIV-infected individuals

    Get PDF
    Chemokines influence HIV neuropathogenesis by affecting the HIV life cycle, trafficking of macrophages into the nervous system, glial activation, and neuronal signaling and repair processes; however, knowledge of their relationship to in vivo measures of cerebral injury is limited. The primary objective of this study was to determine the relationship between a panel of chemokines in cerebrospinal fluid (CSF) and cerebral metabolites measured by proton magnetic resonance spectroscopy (MRS) in a cohort of HIV-infected individuals. One hundred seventy-one stored CSF specimens were assayed from HIV-infected individuals who were enrolled in two ACTG studies that evaluated the relationship between neuropsychological performance and cerebral metabolites. Concentrations of six chemokines (fractalkine, IL-8, IP-10, MCP-1, MIP-1β, and SDF-1) were measured and compared with cerebral metabolites individually and as composite neuronal, basal ganglia, and inflammatory patterns. IP-10 and MCP-1 were the chemokines most strongly associated with individual cerebral metabolites. Specifically, (1) higher IP-10 levels correlated with lower N-acetyl aspartate (NAA)/creatine (Cr) ratios in the frontal white matter and higher MI/Cr ratios in all three brain regions considered and (2) higher MCP-1 levels correlated with lower NAA/Cr ratios in frontal white matter and the parietal cortex. IP-10, MCP-1, and IL-8 had the strongest associations with patterns of cerebral metabolites. In particular, higher levels of IP-10 correlated with lower neuronal pattern scores and higher basal ganglia and inflammatory pattern scores, the same pattern which has been associated with HIV-associated neurocognitive disorders (HAND). Subgroup analysis indicated that the effects of IP-10 and IL-8 were influenced by effective antiretroviral therapy and that memantine treatment may mitigate the neuronal effects of IP-10. This study supports the role of chemokines in HAND and the validity of MRS as an assessment tool. In particular, the findings identify relationships between the immune response—particularly an interferon-inducible chemokine, IP-10—and cerebral metabolites and suggest that antiretroviral therapy and memantine modify the impact of the immune response on neurons

    Construction of gene regulatory networks using biclustering and bayesian networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs) have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA microarrays are traditionally used for GRN modelling. One of the major problems with microarrays is that a dataset consists of relatively few time points with respect to the large number of genes. Dimensionality is one of the interesting problems in GRN modelling.</p> <p>Results</p> <p>In this paper, we develop a biclustering function enrichment analysis toolbox (BicAT-plus) to study the effect of biclustering in reducing data dimensions. The network generated from our system was validated via available interaction databases and was compared with previous methods. The results revealed the performance of our proposed method.</p> <p>Conclusions</p> <p>Because of the sparse nature of GRNs, the results of biclustering techniques differ significantly from those of previous methods.</p

    Enterocyte Shedding and Epithelial Lining Repair Following Ischemia of the Human Small Intestine Attenuate Inflammation

    Get PDF
    BACKGROUND: Recently, we observed that small-intestinal ischemia and reperfusion was found to entail a rapid loss of apoptotic and necrotic cells. This study was conducted to investigate whether the observed shedding of ischemically damaged epithelial cells affects IR induced inflammation in the human small gut. METHODS AND FINDINGS: Using a newly developed IR model of the human small intestine, the inflammatory response was studied on cellular, protein and mRNA level. Thirty patients were consecutively included. Part of the jejunum was subjected to 30 minutes of ischemia and variable reperfusion periods (mean reperfusion time 120 (+/-11) minutes). Ethical approval and informed consent were obtained. Increased plasma intestinal fatty acid binding protein (I-FABP) levels indicated loss in epithelial cell integrity in response to ischemia and reperfusion (p<0.001 vs healthy). HIF-1alpha gene expression doubled (p = 0.02) and C3 gene expression increased 4-fold (p = 0.01) over the course of IR. Gut barrier failure, assessed as LPS concentration in small bowel venous effluent blood, was not observed (p = 0.18). Additionally, mRNA expression of HO-1, IL-6, IL-8 did not alter. No increased expression of endothelial adhesion molecules, TNFalpha release, increased numbers of inflammatory cells (p = 0.71) or complement activation, assessed as activated C3 (p = 0.14), were detected in the reperfused tissue. CONCLUSIONS: In the human small intestine, thirty minutes of ischemia followed by up to 4 hours of reperfusion, does not seem to lead to an explicit inflammatory response. This may be explained by a unique mechanism of shedding of damaged enterocytes, reported for the first time by our group
    corecore