35 research outputs found

    Drivers of grassland loss in Hungary during the post-socialist transformation (1987–1999)

    Get PDF
    The increase in the speed of land-cover change experienced worldwide is becoming a growing concern. Major socio-economic transitions, such as the breakdown of socialism in Europe, may lead to particularly high rates of landscape transformations. In this paper we examined the loss of semi-natural grasslands in Hungary between 1987 and 1999. We studied the relationship between 9 potential driving forces and the fate of grasslands using logistic GLMs. Grassland loss was found to be very high (1.31 % per year), which is far higher than either before or after this period. The most influential predictors of grassland loss were environmental and landscape characteristics (soil type, area of remnant grassland patches), and the socio-economic context (distance to paved road, and nearest settlement, human population density). Several processes and relationships can only be understood from a historical perspective (e.g. large extent of afforestation, strong decrease of soil water table). Grassland loss during the study period emerged as a consequence of survival strategies of individual farmers seeking adaptation to the changing environmental and socio-economic conditions, and not urbanization and agricultural intensification which are the main underlying drivers for the ongoing landscape transformations in most parts of the developed world. Though globalization increasingly influences local land use decisions , reconstructing and modelling recent landscape changes cannot be done without a proper understanding of local history and culture. Our analysis shows the importance of large-area yet high resolution landscape change research, which may reveal unexpected patterns of land cover change, undetected at coarser scales

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore