25 research outputs found

    Broadband Observations of High Redshift Blazars

    Get PDF
    We present a multi-wavelength study of four high redshift blazars, S5 0014+81 (z = 3.37), CGRaBS J0225+1846 (z = 2.69), BZQ J1430+4205 (z = 4.72), and 3FGL J1656.2−3303 (z = 2.40) using quasi-simultaneous data from the Swift, Nuclear Spectroscopic Telescope Array (NuSTAR) and the Fermi-Large Area Telescope (LAT) and also archival XMM-Newton observations. Other than 3FGL J1656.2−3303, none of the sources were known as γ-ray emitters, and our analysis of ~7.5 yr of LAT data reveals the first time detection of statistically significant γ-ray emission from CGRaBS J0225+1846. We generate the broadband spectral energy distributions (SED) of all the objects, centering at the epoch of NuSTAR observations and reproduce them using a one-zone leptonic emission model. The optical−UV emission in all the objects can be explained by radiation from the accretion disk, whereas the X-ray to γ-ray windows of the SEDs are found to be dominated by inverse Compton scattering off the broad line region photons. All of them host black holes that are billions of solar masses. Comparing the accretion disk luminosity and the jet power of these sources with a large sample of blazars, we find them to occupy a high disk luminosity–jet power regime. We also investigate the X-ray spectral properties of the sources in detail with a major focus on studying the causes of soft X-ray deficit, a feature generally seen in high redshift radio-loud quasars. We summarize that this feature could be explained based on the intrinsic curvature in the jet emission rather than being due to the external effects predicted in earlier studies, such as host galaxy and/or warm absorption.A.C.F. thanks Greg Madejski for discussions on the curvature of blazar X-ray spectra and acknowledges support from ERC Advanced Grant 340442. This research has made use of data, software, and/or web tools obtained from NASAs High Energy Astrophysics Science Archive Research Center (HEASARC), a service of Goddard Space Flight Center and the Smithsonian Astrophysical Observatory. Part of this work is based on archival data, software, or online services provided by the ASI Science Data Center (ASDC). This research has made use of the XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASDC, Italy. This research has also made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (Caltech, USA). This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/

    Estimation of the size and structure of the broad line region using Bayesian approach

    Get PDF
    Understanding the geometry and kinematics of the broad line region (BLR) of active galactic nuclei (AGN) is important to estimate black hole masses in AGN and study the accretion process. The technique of reverberation mapping (RM) has provided estimates of BLR size for more than 100 AGN now; however, the structure of the BLR has been studied for only a handful number of objects. Towards this, we investigated the geometry of the BLR for a large sample of 57 AGN using archival RM data. We performed systematic modelling of the continuum and emission line light curves using a Markov chain Monte Carlo method based on Bayesian statistics implemented in PBMAP (Parallel Bayesian code for reverberation - MAPping data) code to constrain BLR geometrical parameters and recover velocity integrated transfer function. We found that the recovered transfer functions have various shapes such as single-peaked, double-peaked, and top-hat suggesting that AGN have very different BLR geometries. Our model lags are in general consistent with that estimated using the conventional cross-correlation methods. The BLR sizes obtained from our modelling approach is related to the luminosity with a slope of 0.583 +/- 0.026 and 0.471 +/- 0.084 based on H beta and H alpha lines, respectively. We found a non-linear response of emission line fluxes to the ionizing optical continuum for 93 per cent objects. The estimated virial factors for the AGN studied in this work range from 0.79 to 4.94 having a mean at 1.78 +/- 1.77 consistent with the values found in the literature

    Dust reverberation mapping of Z229-15

    Get PDF
    We report results of the dust reverberation mapping (DRM) on the Seyfert 1 galaxy Z229-15 at z = 0.0273. Quasi-simultaneous photometric observations for a total of 48 epochs were acquired during the period 2017 July to 2018 December in B, V, J, H and K-s bands. The calculated spectral index (α) between B and V bands for each epoch was used to correct for the accretion disc (AD) component present in the infrared light curves. The observed α ranges between -0.99 and 1.03. Using cross-correlation function analysis we found significant time delays between the optical V and the AD corrected J, H and Ks light curves. The lags in the rest frame of the source are 12.52(-9.55)(+10.00) d (between V and J), 15.63-5.11+5.05 d (between V and H) and 20.36-5.68 +5.82 d (between V and Ks). Given the large error bars, these lags are consistent with each other. However, considering the lag between V and K-s bands to represent the inner edge of the dust torus, the torus in Z229-15 lies at a distance of 0.017 pc from the central ionizing continuum. This is smaller than that expected from the radius luminosity (R-L) relationship known from DRM. Using a constant α = 0.1 to account for the AD component, as is normally done in DRM, the deduced radius (0.025 pc) lies close to the expected R-L relation. However, usage of constant a in DRM is disfavoured as the alpha of the ionizing continuum changes with the flux of the source

    Night-sky brightness monitoring in Hong Kong - a city-wide light pollution assessment

    Get PDF
    Results of the first comprehensive light pollution survey in Hong Kong are presented. The night-sky brightness was measured and monitored around the city using a portable light sensing device called the Sky Quality Meter over a 15-month period beginning in March 2008. A total of 1,957 data sets were taken at 199 distinct locations, including urban and rural sites covering all 18 Administrative Districts of Hong Kong. The survey shows that the environmental light pollution problem in Hong Kong is severe - the urban night-skies (sky brightness at 15.0 mag per arcsec square) are on average ~100 times brighter than at the darkest rural sites (20.1 mag per arcsec square), indicating that the high lighting densities in the densely populated residential and commercial areas lead to light pollution. In the worst polluted urban location studied, the night-sky at 13.2 mag per arcsec square can be over 500 times brighter than the darkest sites in Hong Kong. The observed night-sky brightness is found to be affected by human factors such as land utilization and population density of the observation sites, together with meteorological and/or environmental factors. Moreover, earlier night-skies (at 9:30pm local time) are generally brighter than later time (at 11:30pm), which can be attributed to some public and commercial lightings being turned off later at night. On the other hand, no concrete relationship between the observed sky brightness and air pollutant concentrations could be established with the limited survey sampling. Results from this survey will serve as an important database for the public to assess whether new rules and regulations are necessary to control the use of outdoor lightings in Hong Kong.Comment: 33 pages, 13 figures, Environmental Monitoring and Assessment, in pres

    TXS 1206+549: a new gamma-ray-detected narrow-line Seyfert 1 galaxy at redshift 1.34?

    No full text
    Radio and gamma-ray loud narrow-line Seyfert 1 galaxies (NLS1s) are unique objects to study the formation and evolution of relativistic jets, as they are believed to have high accretion rates and powered by low mass black holes contrary to that known for blazars. However, only about a dozen γ-ray-detected NLS1s (γ-NLS1s) are known to date and all of them are at z ≤ 1. Here, we report the identification of a new γ-ray-emitting NLS1 TXS 1206 + 549 at z = 1.344. A near-infrared spectrum taken with the SubaruTelescope showed H β emission line with FWHM of 1194 +/- 77 km s-1 and weak [OIII] emission line but no optical FeII lines, due to the limited wavelength coverage and poor signal-to-noise ratio. However, UV FeII lines are present in the SDSS optical spectrum. The source is very radio-loud, unresolved, and has a flat radio spectrum. The broad-band spectral energy distribution of the source has the typical two hump structure shown by blazars and other γ-NLS1s. The source exhibits strong variability at all wavelengths such as the optical, infrared, and γ-ray bands. All these observed characteristics show that TXS 1206 + 549 is the most distant γ-NLS1 known to date.</p
    corecore