34 research outputs found
Residency patterns and migration dynamics of adult bull sharks (Carcharhinus leucas) on the east coast of southern Africa:
Bull sharks (Carcharhinus leucas) are globally distributed top predators that play an important ecological role within coastal marine communities. However, little is known about the spatial and temporal scales of their habitat use and associated ecological role. In this study, we employed passive acoustic telemetry to investigate the residency patterns and migration dynamics of 18 adult bull sharks (195–283 cm total length) tagged in southern Mozambique for a period of between 10 and 22 months. The majority of sharks (n = 16) exhibited temporally and spatially variable residency patterns interspersed with migration events. Ten individuals undertook coastal migrations that ranged between 433 and 709 km (mean = 533 km) with eight of these sharks returning to the study site
Habitat partitioning and vulnerability of sharks in the Great Barrier Reef Marine Park
Sharks present a critical conservation challenge, but little is known about their spatial distribution and vulnerability, particularly in complex seascapes such as Australia's Great Barrier Reef Marine Park (GBRMP). We review (1) the distribution of shark species among the primary habitats of the GBRMP (coral reefs, inshore/shelf, pelagic and deep-water habitats) (2) the relative exploitation of each species by fisheries, and (3) how current catch rates interact with their vulnerability and trophic index. Excluding rays and chimaeras, we identify a total of 82 shark species in the GBRMP. We find that shark research in the GBRMP has yielded little quantitative information on most species. Reef sharks are largely site-fidelic, but can move large distances and some regularly use non-reef habitats. Inshore and shelf sharks use coastal habitats either exclusively or during specific times in their life cycle (e.g. as nurseries). Virtually nothing is known about the distribution and habitat use of the GBRMP's pelagic and deep-water sharks. At least 46 species (53.5 %) are caught in one or more fisheries, but stock assessments are lacking for most. At least 17 of the sharks caught are considered highly vulnerable to exploitation. We argue that users of shark resources should be responsible for demonstrating that a fishery is sustainable before exploitation is allowed to commence or continue. This fundamental change in management principle will safeguard against stock collapses that have characterised many shark fisheries
When sharks are away, rays will play: effects of top predator removal in coral reef ecosystems
Shark abundances are decreasing on many coral reefs, but the ecosystem effects of this loss are poorly understood. Rays are a prevalent mesopredator in tropical coral reef ecosystems that are preyed upon by top predators like sharks. Studies have suggested reduced predator abundances lead to increases in mesopredator abundance (mesopredator release). We examined the relationship between top predator abundances and the abundance and behaviour of 2 small benthic ray genera using baited remote underwater video systems (BRUVS) across 6 countries. Where predators were more abundant, 2 genera of small benthic rays were sighted less often, possibly because of lower abundances. Small ray behaviour was also significantly affected by predator abundance. Individuals of focal ray species visited BRUVS significantly fewer times at sites with higher predator abundances. Where predators were less abundant, rays spent significantly more time in the video frame, and were more likely to feed from bait bags. In addition to predator abundance, small ray presence was significantly influenced by reef relief and depth. Neotrygon spp. were more abundant on deeper, lower relief habitats, while Taeniura spp. were more prevalent in reef-associated shallow, high relief habitats. Overall, this study found that predator abundance had a significant effect on small benthic ray abundance and behaviour in the presence of BRUVS. Results demonstrate that changes in both abundance and behaviour associated with predator loss may make the interpretation of phenomenon like mesopredator release more difficult to identify unless behavioural effects are considered.</jats:p
When sharks are away, rays will play: effects of top predator removal in coral reef ecosystems
Shark abundances are decreasing on many coral reefs, but the ecosystem effects of this loss are poorly understood. Rays are a prevalent mesopredator in tropical coral reef ecosystems that are preyed upon by top predators like sharks. Studies have suggested reduced predator abundances lead to increases in mesopredator abundance (mesopredator release). We examined the relationship between top predator abundances and the abundance and behaviour of 2 small benthic ray genera using baited remote underwater video systems (BRUVS) across 6 countries. Where predators were more abundant, 2 genera of small benthic rays were sighted less often, possibly because of lower abundances. Small ray behaviour was also significantly affected by predator abundance. Individuals of focal ray species visited BRUVS significantly fewer times at sites with higher predator abundances. Where predators were less abundant, rays spent significantly more time in the video frame, and were more likely to feed from bait bags. In addition to predator abundance, small ray presence was significantly influenced by reef relief and depth. Neotrygon spp. were more abundant on deeper, lower relief habitats, while Taeniura spp. were more prevalent in reef-associated shallow, high relief habitats. Overall, this study found that predator abundance had a significant effect on small benthic ray abundance and behaviour in the presence of BRUVS. Results demonstrate that changes in both abundance and behaviour associated with predator loss may make the interpretation of phenomenon like mesopredator release more difficult to identify unless behavioural effects are considered
M-Risk: a framework for assessing global fisheries management efficacy of sharks, rays and chimaeras
Fisheries management is essential to guarantee sustainable capture of target species and avoid undesirable declines of incidentally captured species. A key challenge is halting and reversing declines of shark and ray species, and specifically assessing the degree to which management is sufficient to avoid declines in relatively data-poor fisheries. While ecological risk analyses focus on intrinsic ‘productivity’ and extrinsic ‘susceptibility’, one would ideally consider the influence of ‘fisheries management’. Currently, there is no single management evaluation that can be applied to a combination of fishery types at the scale of individual country or Regional Fisheries Management Organizations (RFMOs). Here, we outline a management-risk (M-Risk) framework for sharks, rays and chimaeras used to evaluate species' risk of overfishing resulting from ineffective management. We illustrate our approach with application to one country (Ecuador) and RFMO (Inter-American Tropical Tuna Commission) and illustrate the variation in scores among species. We found that while both management units assessed had similar overall scores, the scores for individual attributes varied. Ecuador scored higher in reporting-related attributes, while the IATTC scored higher in attributes related to data collection and use. We evaluated whether the management of individual species was sufficient for their relative sensitivity by combining the management-risk score for each species with their intrinsic sensitivity to determine a final M-Risk score. This framework can be applied to determine which species face the greatest risk of overfishing and be used by fisheries managers to identify effective management policies by replicating regulations from countries with lower risk scores
Prostate cancer bone metastases on staging prostate MRI: prevalence and clinical features associated with their diagnosis
Fat poor angiomyolipoma differentiation from renal cell carcinoma at 320-slice dynamic volume CT perfusion
The trophic ecology of two abundant mesopredators in south-east coastal waters of Tasmania, Australia
Investigating predator–prey relationships is an important component for identifying and understanding the factors that influence the structure and function of ecosystems. Mesopredators, defined as mid-level predators, have a profound effect on ecosystem structure by contributing an important link between apex predators and lower trophic levels. The diet of two elasmobranch mesopredators, Squalus acanthias and Mustelus antarcticus, was investigated in three locations in south-east Tasmania. Squalus acanthias consumed predominantly pelagic teleosts and cephalopods, while M. antarcticus predominantly consumed benthic crustaceans. As a result, there was low dietary and niche overlap between the two species. There was however evidence of intra-specific dietary variations between locations for both the species. This study has contributed to a better understanding of the top-down dynamics of the food web in coastal Tasmania, by providing important dietary information of two abundant mesopredators. In addition, the similar dietary patterns for S. acanthias and other Mustelus species over much of their global range suggest they may be consistent in their trophic roles across systems, with limited competition between these two sympatric mesopredators to be expected
