215 research outputs found
The S phase checkpoint promotes the Smc5/6 complex dependent SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε
Replication fork stalling and accumulation of single-stranded DNA trigger the S phase checkpoint, a signalling cascade that, in budding yeast, leads to the activation of the Rad53 kinase. Rad53 is essential in maintaining cell viability, but its targets of regulation are still partially unknown. Here we show that Rad53 drives the hyper-SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε, principally following replication forks stalling induced by nucleotide depletion. Pol2 is the main target of SUMOylation within the replisome and its modification requires the SUMO-ligase Mms21, a subunit of the Smc5/6 complex. Moreover, the Smc5/6 complex co-purifies with Pol ε, independently of other replisome components. Finally, we map Pol2 SUMOylation to a single site within the N-terminal catalytic domain and identify a SUMO-interacting motif at the C-terminus of Pol2. These data suggest that the S phase checkpoint regulate Pol ε during replication stress through Pol2 SUMOylation and SUMO-binding abilit
Tumor Necrosis Factor-Alpha G308α Gene Polymorphism and Essential Hypertension: A Meta-Analysis Involving 2244 Participants
BACKGROUND: The tumor necrosis factor-alpha (TNFα) G308A gene polymorphism has been implicated in susceptibility to essential hypertension (EH), but study results are still controversial. OBJECTIVE AND METHODS: The present meta-analysis is performed to investigate the relationship between the TNFα G308A gene polymorphism and EH. Electronic databases were searched and seven separate studies on the association of the TNF α G308A gene polymorphism with EH were analyzed. The meta-analysis involved 1092 EH patients and 1152 controls. The pooled odds ratios (ORs) and their corresponding 95% confidence interval (CI) were calculated by a fixed or random effect model. RESULTS: A significant relationship between the TNFα G308A gene polymorphism and EH was found in an allelic genetic model (OR: 1.45, 95% CI: 1.17 to 1.80, P = 0.0008), a recessive genetic model (OR: 3.181, 95% CI: 1.204 to 8.408, P = 0.02), and a homozygote model (OR: 3.454, 95% CI: 1.286 to 9.278, P = 0.014). No significant association between them was detected in both a dominant genetic model (OR: 1.55, 95% CI: 0.99 to 2.42, P = 0.06) or a heterozygote genetic model (OR: 1.45, 95% CI: 0.90 to 2.33, P = 0.13). CONCLUSION: The TNFα G308A gene polymorphism is associated with EH susceptibility
Honokiol Induces Calpain-Mediated Glucose-Regulated Protein-94 Cleavage and Apoptosis in Human Gastric Cancer Cells and Reduces Tumor Growth
Background. Honokiol, a small molecular weight natural product, has been shown to possess potent anti-neoplastic and anti-angiogenic properties. Its molecular mechanisms and the ability of anti-gastric cancer remain unknown. It has been shown that the anti-apoptotic function of the glucose-regulated proteins (GRPs) predicts that their induction in neoplastic cells can lead to cancer progression and drug resistance. We explored the effects of honokiol on the regulation of GRPs and apoptosis in human gastric cancer cells and tumor growth. Methodology and Principal Findings. Treatment of various human gastric cancer cells with honokiol led to the induction of GRP94 cleavage, but did not affect GRP78. Silencing of GRP94 by small interfering RNA (siRNA) could induce cell apoptosis. Treatment of cells with honokiol or chemotherapeutics agent etoposide enhanced the increase in apoptosis and GRP94 degradation. The calpain activity and calpain-II (m-calpain) protein (but not calpain-I (mu-calpain)) level could also be increased by honokiol. Honokiol-induced GRP94 down-regulation and apoptosis in gastric cancer cells could be reversed by siRNA targeting calpain-II and calpain inhibitors. Furthermore, the results of immunofluorescence staining and immunoprecipitation revealed a specific interaction of GRP94 with calpain-II in cells following honokiol treatment. We next observed that tumor GRP94 over-expression and tumor growth in BALB/c nude mice, which were inoculated with human gastric cancer cells MKN45, are markedly decreased by honokiol treatment. Conclusions and Significance. These results provide the first evidence that honokiol-induced calpain-II-mediated GRP94 cleavage causes human gastric cancer cell apoptosis. We further suggest that honokiol may be a possible therapeutic agent to improve clinical outcome of gastric cancer
Long-Term Mortality of Patients with Septic Ocular or Central Nervous System Complications from Pyogenic Liver Abscess: A Population-Based Study
Background: Taiwan is endemic for pyogenic liver abscess (PLA). Septic ocular or central nervous system (CNS) complications derived from PLA can result in catastrophic disability. We investigated the epidemiology and long-term prognosis of PLA patients with septic ocular or CNS complications over an 8-year period. Methodology/Principal Findings: We extracted 21,307 patients with newly diagnosed PLA from a nationwide health registry in Taiwan between 2000 and 2007. The frequency of and risk factors for PLA with septic ocular or CNS complications were determined. The 2-year survival of these patients was compared between those with and without septic ocular or CNS complications. Septic ocular or CNS complications accounted for 2.1 % of all PLA patients. Age and the Charlson comorbidity index were significantly lower in PLA patients with ocular or CNS complications than those without. Diabetes and age,65 years were independent predictors of septic ocular or CNS complications. The 2-year mortality of patients with septic ocular or CNS complications was similar to those without complications (24.8 % vs. 27.5%, p = 0.502). However, among patients,65 years old and a Charlson index #1, the 2-year mortality was significantly higher in those with than without complications (18.6 % vs. 11.8%, p = 0.001). Conclusions/Significance: Physicians should recognize that catastrophic disability due to ocular or neurologica
Sex Differential Genetic Effect of Chromosome 9p21 on Subclinical Atherosclerosis
BACKGROUND: Chromosome 9p21 has recently been shown to be a risk region for a broad range of vascular diseases. Since carotid intima-media thickness (IMT) and plaque are independent predictors for vascular diseases, the association between 9p21 and these two phenotypes was investigated. METHODOLOGY/PRINCIPAL FINDINGS: Carotid segment-specific IMT and plaques were obtained in 1083 stroke- and myocardial infarction-free volunteers. We tested the genotypes and haplotypes of key single nucleotide polymorphisms (SNPs) on chromosome 9p21 for the associations with carotid IMT and plaque. Multivariate permutation analyses demonstrated that carriers of the T allele of SNP rs1333040 were significantly associated with thicker common carotid artery (CCA) IMT (p=0.021) and internal carotid artery (ICA) IMT (p=0.033). The risk G allele of SNP rs2383207 was associated with ICA IMT (p=0.007). Carriers of the C allele of SNP rs1333049 were found to be significantly associated with thicker ICA IMT (p=0.010) and the greater risk for the presence of carotid plaque (OR=1.57 for heterozygous carriers; OR=1.75 for homozygous carriers). Haplotype analysis showed a global p value of 0.031 for ICA IMT and 0.115 for the presence of carotid plaque. Comparing with the other haplotypes, the risk TGC haplotype yielded an adjusted p value of 0.011 and 0.017 for thicker ICA IMT and the presence of carotid plaque respectively. Further analyzing the data separated by sex, the results were significant only in men but not in women. CONCLUSIONS: Chromosome 9p21 had a significant association with carotid atherosclerosis, especially ICA IMT. Furthermore, such genetic effect was in a gender-specific manner in the Han Chinese population
Complete Chloroplast Genome Sequence of an Orchid Model Plant Candidate: Erycina pusilla Apply in Tropical Oncidium Breeding
Oncidium is an important ornamental plant but the study of its functional genomics is difficult. Erycina pusilla is a fast-growing Oncidiinae species. Several characteristics including low chromosome number, small genome size, short growth period, and its ability to complete its life cycle in vitro make E. pusilla a good model candidate and parent for hybridization for orchids. Although genetic information remains limited, systematic molecular analysis of its chloroplast genome might provide useful genetic information. By combining bacterial artificial chromosome (BAC) clones and next-generation sequencing (NGS), the chloroplast (cp) genome of E. pusilla was sequenced accurately, efficiently and economically. The cp genome of E. pusilla shares 89 and 84% similarity with Oncidium Gower Ramsey and Phalanopsis aphrodite, respectively. Comparing these 3 cp genomes, 5 regions have been identified as showing diversity. Using PCR analysis of 19 species belonging to the Epidendroideae subfamily, a conserved deletion was found in the rps15-trnN region of the Cymbidieae tribe. Because commercial Oncidium varieties in Taiwan are limited, identification of potential parents using molecular breeding method has become very important. To demonstrate the relationship between taxonomic position and hybrid compatibility of E. pusilla, 4 DNA regions of 36 tropically adapted Oncidiinae varieties have been analyzed. The results indicated that trnF-ndhJ and trnH-psbA were suitable for phylogenetic analysis. E. pusilla proved to be phylogenetically closer to Rodriguezia and Tolumnia than Oncidium, despite its similar floral appearance to Oncidium. These results indicate the hybrid compatibility of E. pusilla, its cp genome providing important information for Oncidium breeding
Neurotrophic Effect of Citrus 5-Hydroxy-3,6,7,8,3′,4′-Hexamethoxyflavone: Promotion of Neurite Outgrowth via cAMP/PKA/CREB Pathway in PC12 Cells
5-Hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone (5-OH-HxMF), a hydroxylated polymethoxyflavone, is found exclusively in the Citrus genus, particularly in the peels of sweet orange. In this research, we report the first investigation of the neurotrophic effects and mechanism of 5-OH-HxMF in PC12 pheochromocytoma cells. We found that 5-OH-HxMF can effectively induce PC12 neurite outgrowth accompanied with the expression of neuronal differentiation marker protein growth-associated protein-43(GAP-43). 5-OH-HxMF caused the enhancement of cyclic AMP response element binding protein (CREB) phosphorylation, c-fos gene expression and CRE-mediated transcription, which was inhibited by 2-naphthol AS-E phosphate (KG-501), a specific antagonist for the CREB-CBP complex formation. Moreover, 5-OH-HxMF-induced both CRE transcription activity and neurite outgrowth were inhibited by adenylate cyclase and protein kinase A (PKA) inhibitor, but not MEK1/2, protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3K) or calcium/calmodulin-dependent protein kinase (CaMK) inhibitor. Consistently, 5-OH-HxMF treatment increased the intracellular cAMP level and downstream component, PKA activity. We also found that addition of K252a, a TrKA antagonist, significantly inhibited NGF- but not 5-OH-HxMF-induced neurite outgrowth. These results reveal for the first time that 5-OH-HxMF is an effective neurotrophic agent and its effect is mainly through a cAMP/PKA-dependent, but TrKA-independent, signaling pathway coupling with CRE-mediated gene transcription. A PKC-dependent and CREB-independent pathway was also involved in its neurotrophic action
Folding of Matrix Metalloproteinase-2 Prevents Endogenous Generation of MHC Class-I Restricted Epitope
BACKGROUND: We previously demonstrated that the matrix metalloproteinase-2 (MMP-2) contained an antigenic peptide recognized by a CD8 T cell clone in the HLA-A*0201 context. The presentation of this peptide on class I molecules by human melanoma cells required a cross-presentation mechanism. Surprisingly, the classical endogenous processing pathway did not process this MMP-2 epitope. METHODOLOGY/PRINCIPAL FINDINGS: By PCR directed mutagenesis we showed that disruption of a single disulfide bond induced MMP-2 epitope presentation. By Pulse-Chase experiment, we demonstrated that disulfide bonds stabilized MMP-2 and impeded its degradation. Finally, using drugs, we documented that mutated MMP-2 epitope presentation used the proteasome and retrotranslocation complex. CONCLUSIONS/SIGNIFICANCE: These data appear crucial to us since they established the existence of a new inhibitory mechanism for the generation of a T cell epitope. In spite of MMP-2 classified as a self-antigen, the fact that cross-presentation is the only way to present this MMP-2 epitope underlines the importance to target this type of antigen in immunotherapy protocols
Abnormality of the DNA double-strand-break checkpoint/repair genes, ATM, BRCA1 and TP53, in breast cancer is related to tumour grade
- …
