16 research outputs found

    Human-Induced Soil Degradation in Chile

    No full text

    Impact of PhACs on Soil Microorganisms

    No full text
    International audienceThe use of reclaimed water in crop irrigation helps to mitigate water shortage. The fertilization of arable soils with sewage sludge, biosolids, or livestock manure reduces extensive application of synthetic fertilizers. However, both practices lead to the introduction of pharmaceutical active compounds (PhACs) in arable soil, known to host a wide range of living organisms, including microorganisms which are supporting numerous ecosystem services. In soils, the fate of PhACs is governed by different abiotic and biotic processes. Among them, soil sorption and microbial transformation are the most important ones and determine the fate, occurrence, and dispersion of PhACs into the different compartments of the environment. The presence of PhACs in soils can compromise the abundance, diversity, and activity of the soil microbial community which is one of the key players in a range of soil ecosystem services. This chapter reviews the current knowledge of the effects of PhACs, commonly found in wastewater effluents and derived organic fertilizers, on the soil microbial community

    Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer

    No full text
    Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease1. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P < 5 × 10−8 with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 16% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer
    corecore