11 research outputs found

    Maintenance and preservation of ectomycorrhizal and arbuscular mycorrhizal fungi

    No full text
    Short- to long-term preservation of mycorrhizal fungi is essential for their in-depth study and, in the case of culture collections, for safeguarding their biodiversity. Many different maintenance/preservation methods have been developed in the last decades, from soil- and substrate-based maintenance to preservation methods that reduce (e.g., storage under water) or arrest (e.g., cryopreservation) growth and metabolism; all have advantages and disadvantages. In this review, the principal methods developed so far for ectomycorrhizal and arbuscular mycorrhizal fungi are reported and described given their distinct biology/ecology/evolutionary history. Factors that are the most important for their storage are presented and a protocol proposed which is applicable, although not generalizable, for the long-term preservation at ultra-low temperature of a large panel of these organisms. For ECM fungi, isolates should be grown on membranes or directly in cryovials until the late stationary growth phase. The recommended cryopreservation conditions are: a cryoprotectant of 10 % glycerol, applied 1-2 h prior to cryopreservation, a slow cooling rate (1 °C min-1) until storage below -130 °C, and fast thawing by direct plunging in a water bath at 35-37 °C. For AMF, propagules (i.e., spores/colonized root pieces) isolated from cultures in the late or stationary phase of growth should be used and incorporated in a carrier (i.e., soil or alginate beads), preferably dried, before cryopreservation. For in vitro-cultured isolates, 0.5 M trehalose should be used as cryoprotectant, while isolates produced in vivo can be preserved in dried soil without cryoprotectant. A fast cryopreservation cooling rate should be used (direct immersion in liquid nitrogen or freezing at temperatures below -130 °C), as well as fast thawing by direct immersion in a water bath at 35 °C. © 2013 Springer-Verlag Berlin Heidelberg

    Anodic Reactions

    No full text
    corecore