33 research outputs found

    Chronic Helminth Infections Protect Against Allergic Diseases by Active Regulatory Processes

    Get PDF
    Developed countries are suffering from an epidemic rise in immunologic disorders, such as allergy-related diseases and certain autoimmunities. Several studies have demonstrated a negative association between helminth infections and inflammatory diseases (eg, allergy), providing a strong case for the involvement of helminth infections in this respect. However, some studies point in the opposite direction. The discrepancy may be explained by differences in frequency, dose, time, and type of helminth. In this review, new studies are discussed that may support the concept that chronic helminth infections in particular—but not acute infections—are associated with the expression of regulatory networks necessary for downmodulating allergic immune responses to harmless antigens. Furthermore, different components of regulatory networks are highlighted, such as the role of regulatory T and B cells, modulation of dendritic cells, early innate signals from structural cells (eg, epithelial cells), and their individual contributions to protection against allergic diseases. It is of great interest to define and characterize specific helminth molecules that have profound immunomodulatory capacities as targets for therapeutic application in the treatment or prophylaxis of allergic manifestations

    A novel ASXL1–OGT axis plays roles in H3K4 methylation and tumor suppression in myeloid malignancies

    No full text
    ASXL1 plays key roles in epigenetic regulation of gene expression through methylation of histone H3K27, and disruption of ASXL1 drives myeloid malignancies, at least in part, via derepression of posterior HOXA loci. However, little is known about the identity of proteins that interact with ASXL1 and about the functions of ASXL1 in modulation of the active histone mark, such as H3K4 methylation. In this study, we demonstrate that ASXL1 is a part of a protein complex containing HCFC1 and OGT; OGT directly stabilizes ASXL1 by O-GlcNAcylation. Disruption of this novel axis inhibited myeloid differentiation and H3K4 methylation as well as H2B glycosylation and impaired transcription of genes involved in myeloid differentiation, splicing, and ribosomal functions; this has implications for myelodysplastic syndrome (MDS) pathogenesis, as each of these processes are perturbed in the disease. This axis is responsible for tumor suppression in the myeloid compartment, as reactivation of OGT induced myeloid differentiation and reduced leukemogenecity both in vivo and in vitro. Our data also suggest that MLL5, a known HCFC1/OGT-interacting protein, is responsible for gene activation by the ASXL1-OGT axis. These data shed light on the novel roles of the ASXL1-OGT axis in H3K4 methylation and activation of transcription
    corecore