1,465 research outputs found

    Large Scale Alignment of Optical Polarizations from Distant QSOs using Coordinate Invariant Statistics

    Full text link
    We introduce several coordinate invariant statistical procedures in order to test for local alignment of polarizations. A large scale alignment of optical polarizations from distant QSOs has recently been observed by \huts and collaborators. The new statistical procedures are based on comparing polarizations at different angular coordinates by making a parallel transport. The results of these statistical procedures continue to support the existence of the large scale alignment effect in the QSO optical polarization data. The alignment is found to be much more pronounced in the data sample with low degrees of polarization p2p\le 2%. This suggests that the alignment may be attributed to some propagation effect. The distance scale over which the alignment effect is dominant is found to be of order 1 Gpc. We also find that a very large scale alignment is present in the large redshift, z1z\ge 1, data sample. Infact the data sample with z1z\ge 1 appears to be aligned over the entire celestial sphere. We discuss possible physical effects, such as extinction and pseudoscalar-photon mixing, which may be responsible for the observations.Comment: 23 pages, 8 figure

    Modelling and prediction of particulate matter, NOx, and performance of a diesel vehicle engine under rare data using relevance vector machine

    Get PDF
    2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Long lasting pain hypersensitivity following ligation of the tendon of the masseter muscle in rats: A model of myogenic orofacial pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A major subgroup of patients with temporomandibular joint (TMJ) disorders have masticatory muscle hypersensitivity. To study myofacial temporomandibular pain, a number of preclinical models have been developed to induce myogenic pain of the masseter muscle, one of the four muscles involved in mastication. The currently used models, however, generate pain that decreases over time and only lasts from hours to weeks and hence are not suitable for studying chronicity of the myogenic pain in TMJ disorders. Here we report a model of constant myogenic orofacial pain that lasts for months.</p> <p>Results</p> <p>The model involves unilateral ligation of the tendon of the anterior superficial part of the rat masseter muscle (TASM). The ligation of the TASM was achieved with two chromic gut (4.0) ligatures via an intraoral approach. Nocifensive behavior of the rat was assessed by probing the skin site above the TASM with a series of von Frey filaments. The response frequencies were determined and an EF<sub>50 </sub>value, defined as the von Frey filament force that produces a 50% response frequency, was derived and used as a measure of mechanical sensitivity. Following TASM ligation, the EF<sub>50 </sub>of the injured side was significantly reduced and maintained throughout the 8-week observation period, suggesting the presence of mechanical hyperalgesia/allodynia. In sham-operated rats, the EF<sub>50 </sub>of the injured side was transiently reduced for about a week, likely due to injury produced by the surgery. Somatotopically relevant Fos protein expression was indentified in the subnucleus caudalis of the spinal trigeminal sensory complex. In the same region, persistent upregulation of NMDA receptor NR1 phosphorylation and protein expression and increased expression of glial markers glial fibrillary acidic protein (astroglia) and CD11b (microglia) were found. Morphine (0.4-8 mg/kg, s.c.) and duloxetine (0.4-20 mg/kg, i.p.), a selective serotonin-norepinephrine reuptake inhibitor, produced dose-dependent attenuation of hyperalgesia.</p> <p>Conclusions</p> <p>Ligation injury of the TASM in rats led to long-lasting and constant mechanical hypersensitivity of myogenic origin. The model will be particularly useful in studying the chronicity of myogenic pain TMJ disorders. The model can also be adapted to other regions of the body for studying pathology of painful tendinopathy seen in sports injury, muscle overuse, and rheumatoid arthritis.</p

    An Improved RSP Method to Detect HpaI Polymorphism in the Apolipoprotein C-1 Gene Promoter

    Get PDF
    BACKGROUND: An apolipoprotein C1 gene promoter polymorphism (CGTT insertion at position -317) is associated with familial dysbetalipoprotemia, cardiovascular diseases, and Alzheimer's disease. Restriction site polymorphism (RSP) assays were previously established to detect this polymorphism. In this study, we introduce an improved RSP assay to detect this polymorphism. METHODS: This method included newly designed primers and only one round of PCR amplification which yields one short and specific APOC1 fragment followed by HpaI digestion. Briefly, It consists of three steps: 1) one round of PCR amplification of DNA sample, 2) HpaI enzyme digestion of PCR products, and 3) electrophoresis on an agarose gel to visualize the genotypes. This improved RSP method was applied to genotype 92 human samples collected from The Johns Hopkins Hospital. RESULTS: The observed allele frequencies for H1 and H2 from 92 genotyped human subjects were 0.707 and 0.293 respectively. The H2 allele frequency in the black subjects (0.350) was significantly (p = 0.024) higher than that in the white subjects (0.177). This method was more economical and convenient than the methods previously reported to detect this mutation in the APOC1 gene. CONCLUSIONS: This assay will be readily applied to screen large sample sizes for population studies in a simple and cost effective way

    Properties of small molecular drug loading and diffusion in a fluorinated PEG hydrogel studied by ^1H molecular diffusion NMR and ^(19)F spin diffusion NMR

    Get PDF
    R_f-PEG (fluoroalkyl double-ended poly(ethylene glycol)) hydrogel is potentially useful as a drug delivery depot due to its advanced properties of sol–gel two-phase coexistence and low surface erosion. In this study, ^1H molecular diffusion nuclear magnetic resonance (NMR) and ^(19)F spin diffusion NMR were used to probe the drug loading and diffusion properties of the R_f-PEG hydrogel for small anticancer drugs, 5-fluorouracil (FU) and its hydrophobic analog, 1,3-dimethyl-5-fluorouracil (DMFU). It was found that FU has a larger apparent diffusion coefficient than that of DMFU, and the diffusion of the latter was more hindered. The result of ^(19)F spin diffusion NMR for the corresponding freeze-dried samples indicates that a larger portion of DMFU resided in the R_f core/IPDU intermediate-layer region (where IPDU refers to isophorone diurethane, as a linker to interconnect the R_f group and the PEG chain) than that of FU while the opposite is true in the PEG–water phase. To understand the experimental data, a diffusion model was proposed to include: (1) hindered diffusion of the drug molecules in the R_f core/IPDU-intermediate-layer region; (2) relatively free diffusion of the drug molecules in the PEG-water phase (or region); and (3) diffusive exchange of the probe molecules between the above two regions. This study also shows that molecular diffusion NMR combined with spin diffusion NMR is useful in studying the drug loading and diffusion properties in hydrogels for the purpose of drug delivery applications

    Two-step stabilization of orbital order and the dynamical frustration of spin in the model charge-transfer insulator KCuF3

    Full text link
    We report a combined experimental and theoretical study of KCuF3, which offers - because of this material's relatively simple lattice structure and valence configuration (d9, i.e., one hole in the d-shell) - a particularly clear view of the essential role of the orbital degree of freedom in governing the dynamical coupling between the spin and lattice degrees of freedom. We present Raman and x-ray scattering evidence that the phase behaviour of KCuF3 is dominated above the Neel temperature (T_N = 40 K) by coupled orbital/lattice fluctuations that are likely associated with rotations of the CuF6 octahedra, and we show that these orbital fluctuations are interrupted by a static structural distortion that occurs just above T_N. A detailed model of the orbital and magnetic phases of KCuF3 reveals that these orbital fluctuations - and the related frustration of in-plane spin-order-are associated with the presence of nearly degenerate low-energy spin-orbital states that are highly susceptible to thermal fluctuations over a wide range of temperatures. A striking implication of these results is that the ground state of KCuF3 at ambient pressure lies near a quantum critical point associated with an orbital/spin liquid phase that is obscured by emergent Neel ordering of the spins; this exotic liquid phase might be accessible via pressure studies.Comment: 13 pages, 3 figure

    Introduction to the functional RG and applications to gauge theories

    Get PDF
    These lectures contain an introduction to modern renormalization group (RG) methods as well as functional RG approaches to gauge theories. In the first lecture, the functional renormalization group is introduced with a focus on the flow equation for the effective average action. The second lecture is devoted to a discussion of flow equations and symmetries in general, and flow equations and gauge symmetries in particular. The third lecture deals with the flow equation in the background formalism which is particularly convenient for analytical computations of truncated flows. The fourth lecture concentrates on the transition from microscopic to macroscopic degrees of freedom; even though this is discussed here in the language and the context of QCD, the developed formalism is much more general and will be useful also for other systems.Comment: 60 pages, 14 figures, Lectures held at the 2006 ECT* School "Renormalization Group and Effective Field Theory Approaches to Many-Body Systems", Trento, Ital

    Super-GZK Photons from Photon-Axion Mixing

    Full text link
    We show that photons with energies above the GZK cutoff can reach us from very distant sources if they mix with light axions in extragalactic magnetic fields. The effect which enables this is the conversion of photons into axions, which are sufficiently weakly coupled to travel large distances unimpeded. These axions then convert back into high energy photons close to the Earth. We show that photon-axion mixing facilitates the survival of super-GZK photons most efficiently with a photon-axion coupling scale of order 10^11 GeV, which is in the same range as the scale for the photon-axion mixing explanation for the dimming of supernovae without cosmic acceleration. We discuss possible observational consequences of this effect.Comment: 17 pages, 5 figures. Published versio

    Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex

    Get PDF
    Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences
    corecore