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Traditionally, the performance maps and emissions of a diesel engine are obtained empirically through many testes on the
dynamometers because no exact mathematical engine model exists. In the current literature, many artificial-neural-network-
(ANN-) based approaches have been developed for diesel engine modelling. However, the drawbacks of ANN would make itself
difficult to be put into some practices including multiple local minima, user burden on selection of optimal network structure,
large training data size, and overfitting risk. To overcome the drawbacks, this paper proposes to apply one emerging technique,
relevance vector machine (RVM), to model the diesel engine, and to predict the emissions and engine performance. With RVM,
only a few experimental data sets can train the model due to the property of global optimal solution. In this study, the engine
speed, load, and coolant temperature are used as the input parameters, while the brake thermal efficiency, brake-specific fuel
consumption, concentrations of nitrogen oxides, and particulate matter are used as the output parameters. Experimental results
show the model accuracy is fairly good even the training data is scarce. Moreover, the model accuracy is compared with that using
typical ANN. Evaluation results also show that RVM is superior to typical ANN approach.

1. Introduction

Air pollution is one of the most challenging problems today
in many cities. The increased use of motor vehicles causes the
amount of exhaust emissions to increase dramatically, which
makes the problem more serious. Reducing the exhaust emis-
sions from engines has then become an important concern
of governments and motor vehicle manufacturers. Moreover,
in view of the increasing oil price and the need to reduce
emission of the global warming gas CO2, there is a demand
to reduce fuel consumption while maintaining the engine
performance. Therefore, many researchers have focused on
the relations between these two issues, namely, engine per-
formance and emissions.

Diesel engines, though having the advantages of high
fuel efficiency and high durability when compared to other
engines, are the major source of nitrogen oxides (NOx)
and particulate matter (PM), which are harmful to human
health and the environment. In particular, the fine and

ultrafine particles (∼10 micrometers or less) emitted by
diesel engines can accumulate in the human respiratory
system and cause various health problems [1] and influence
global climate by absorbing solar radiation and reacting
with other atmospheric constituents [2, 3]. Diesel engines
are used extensively in buses and trucks; thus they are the
major road-side emitters, posing significant threat to the
health of the road users. In order to reduce these emissions,
the combustion process of the engines has to be controlled.
Additional hardware and instruments must be installed to
monitor and control the engine operating parameters. Many
experiments and tests must also be conducted to obtain
a comprehensive understanding on the performance and
emissions of the diesel engine. These are very complicated,
time consuming, and expensive [4].

A way to solve these problems is to create a mathematical
model for the diesel engine so that all the costly and im-
measurable data can be predicted and virtual sensors can be
used to replace the costly sensors. However, the combustion
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Figure 1: An example of diesel engine performance map [5].

process of a diesel engine is too complex that an exact
mathematical model still does not exist today. Figure 1 shows
one example of diesel engine performance map with only
three variables in which the relationship among the engine
load (torque), engine speed, and brake specific fuel con-
sumption is already highly nonlinear. It could be imagined
that if more variables are studied together, the model will be
very complicated and very difficult to obtain. Moreover, the
mathematical model varies for different engines.

In general, black-box identification is one of the com-
monly used modelling techniques suitable for engines be-
cause it can manage complex and uncertain information.
Many recent researches in black-box identification have des-
cribed the use of artificial neural network (ANN) for mod-
elling of diesel engine performance [5–9] and emissions
[7, 8, 10–13] based on experimental data sets. The ANN has
in general, however, three main drawbacks for its learning
process [14].

(1) The architecture, including the number of hidden
neurons, has to be determined a priori or modified
while training by heuristic, which results in a subop-
timal network structure.

(2) The training process (i.e., the minimization of the
residual squared error cost function) in ANN can
easily become stuck in local minima. Various ways of
preventing local minima, like early stopping, weight
decay, have been employed. However, these methods
greatly affect the generalization of the estimated func-
tion (i.e., the capacity of handling new input cases).

(3) The amount of training data is usually large. Nor-
mally at least 200∼400 sets of training data is re-

quired to build an accurate ANN engine model [15].
However, the collection of diesel engine emission and
performance data is usually time consuming and
costly, so the data set is usually lower than 50, re-
sulting in that ANN may not be a good solution for
diesel engine modelling.

To overcome the disadvantages of ANN, an algorithm
entitled relevance vector machine (RVM) was proposed by
Tipping [16]. This approach is an emerging machine learn-
ing technique that is able to utilize more flexible candidate
models, which are typically much sparser, offer probabilistic
prediction, and avoid the need to set additional hyperpa-
rameters. The other advantage is that the training algorithm
of RVM can ensure a global optimal solution whereas the
learning process of ANN may cause a local optimal solution,
so ANN requires more training data to minimize the risk
[14]. With this good property, RVM is likely not to require
too much sample data to build an accurate model. However,
one deficiency of this approach is that the training time is
approximately in the cube of the sample numbers. Thank-
fully, a fast training algorithm [17] is developed for RVM
which initializes with an “empty” model, and sequentially
“add” samples to increase the marginal likelihood, and also
modify their weights. Within the same principal framework,
the objective function can also be increased by deleting the
samples which subsequently become redundant.

Recently, RVM has been applied to system modelling and
predictive control [18–20]. These researches show that RVM
is generally superior to the ANN. Moreover, the application
of RVM to modelling of diesel engines under rare data is very
few. For these reasons, in the present paper, RVM is employed
to model the performance and emission characteristics of
NOx and PM of the diesel engine. Experiments are still
required to provide sample data for RVM training. To
demonstrate the effectiveness of this approach, a neural-
network-based diesel engine model is also constructed and
compared with the RVM model.

2. Relevance Vector Machine

The procedure of the RVM modelling is introduced here.
Consider a training data set D of N input vectors {Xn}Nn=1,
along with N corresponding scalar-valued output {yn}Nn=1.
The output yn is assumed to contain zero-mean Gaussian
noise with variance σ2. Hence, the probability of prediction
error εn for yn is a Gaussian distribution of zero mean and
variance σ2: p(εn | σ2) = N(0, σ2), with

yn = f (Xn, w) + εn. (1)

That is,

p
(
yn | Xn, w, σ2) = N

(
f (Xn, w), σ2), (2)

where f (Xn, w) in (1) is the prediction model for the model
output, yn, with the input Xn and w = [w1, . . . , wN ] is the
weight vector for the RVM model.
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The predicted output ŷ at an input X in the kernel model
can be represented by

ŷ = f (X, w)

=
N∑

i=0

wiK(X, Xi)

= Φw,

(3)

where K(X, Xi) is a basis function and Φ is the N × (N +
1) design matrix with Φ = [φ (X1) · · ·φ(XN )]T , wherein
φ(XN ) = [1K(Xn, X1) · · ·K(Xn, XN )]T . In this research,
radial basis function (RBF) is chosen as the basis function
K because it is commonly used for modelling problems. The
approach for estimating ŷ is to maximize the likelihood in

p
(

y | w, σ2) = (2π)−N/2σ−N exp

{

−
∥∥y −Φw

∥∥2

2σ2

}

. (4)

The likelihood function in (4) is complemented by a
prior over the weights w = {wi}, i = 0 to N , to control the
complexity of the model function and avoid overfitting. The
prior is a zero-mean Gaussian probability distribution and is
defined over every weight wi as follows:

p(w | α) = (2π)−N/2
N∏

i=0

α1/2
i exp

(

−αiw
2
i

2

)

. (5)

The hyperparameters vector, α = [α0, . . . ,αN ]T , controls
how far for each weight, wi, is allowed to deviate from zero.
Consequently, using Bayes’ rule, the posterior over w is given
as follows:

p
(

w | y,α, σ2) = p
(

y | w, σ2
)
p(w | α)

p
(

y | α, σ2
) , (6)

where p(y | α, σ2) is the normalizing factor. p(y | w, σ2) and
p(w | α) are both Gaussian priors. The posterior mean μ and
covariance Σ are as follows [17]:

Σ =
(

A + σ−2ΦTΦ
)−1

,

μ = σ−2ΣΦTy,
(7)

where A defines as diag(α0, . . . ,αN ). In fact, the w in (3) can
be set to the fixed μ for the purpose of point prediction.

Rather than extending the model to include Bayesian
inference over those hyperparameters (which is analytically
intractable), a most-probable point estimate, αMP, may be
found via a type II maximum likelihood procedure. That
is called sparse Bayesian learning which is formulated as
the local maximization with respect to α of the marginal
likelihood, or equivalently, its logarithm L(α):

L(α) = log p
(

y | α, σ2) = log
∫∞

−∞
p
(

y | w, σ2)p(w | α)dw

= −1
2

[
N log 2π + log|C| + yTC−1y

]
,

(8)

Where

C = σ2I + ΦAΦT . (9)

The covariance, ΣMP = Σ, can be obtained by substitut-
ing α = αMP into A in (7), so that the posterior mean weight,
μMP, is obtained by evaluating (7) again with Σ=ΣMP, giving
a final (posterior mean) approximator:

Y = f
(

X∗,μMP

)

=
N∑

i=0

μMPiK(X∗, Xi)

=
N∑

i=0

μMPi exp
(
−‖X∗ −Xi‖

σ2

)
,

(10)

where Y is the prediction of the model output with the un-
seen input data X∗. One crucial observation is that typically
the optimal values of many hyperparameters are infinite [16].
With (7), this leads to a parameter posterior infinitely peaked
at zero for many weights wi with the consequence that μMP
correspondingly comprises very few nonzero elements.

A recent analysis has showed that L(α) has a unique
maximum with respect to αi [16]:

αi = s2
i

q2
i − si

if q2
i > si (11)

αi = ∞ if q2
i ≤ si, (12)

and from these, it simply follows:

sm = αiSi
αi − Si

qi = αiQi

αi − Si
. (13)

Note that when αi = ∞, si = Si and qi = Qi, then, it
is convenient to utilize the Woodbury identity to obtain the
quantities of interest:

Si = φT
i

(
σ−2I

)
φi − φT

i

(
σ−2I

)
ΦΣΦT(σ−2I

)
φi, (14)

Qi = φT
i

(
σ−2I

)
y − φT

i

(
σ−2I

)
ΦΣΦT(σ−2I

)
. (15)

The results of (14) and (15) imply that

(1) if φi is included in the model (i.e. αi <∞) yet q2
i ≤ si,

then φi can be deleted (i.e., set αi to∞);

(2) if φi is excluded from the model (αi = ∞) and q2
i >

si, φi can be added (i.e., set αi to some optimal finite
values).

To train and update the RVM model dynamically, a se-
quential learning algorithm is required. The algorithm starts
with an empty model, and sequentially adds basis func-
tions to increase the marginal likelihood, and modify their
weights. Within the same principal framework, the likeli-
hood can also be increased by deleting those basis functions
which subsequently become redundant. Since this algorithm
sequentially adds or deletes the basis function to or from the
model, the likelihood can be continually increased by adding
and deleting basis function and this mechanism make online
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model update feasible. The steps of the sequential learning
algorithm are shown below.

(1) Initialize σ2 to some sensible values (e.g., var [y]×
0.1) and all other αi are notionally set to infinity.

(2) Initialize Sn and Qn with a single basis vector φi from
(13) and (14) and compute new αn from (11) which
can be simplified as

αi =
∥
∥φi
∥
∥2

∥
∥
∥φT

i y
∥
∥
∥

2
/
∥∥φi
∥∥2 − σ2

. (16)

(3) Explicitly compute Σ and μ (which are scalars ini-
tially), along with initial values of si and qi for all N
basis functions φi.

(4) Select a candidate basis vector φi from the set of all N
basis functions.

(5) Compute θi = Q2
i − Si.

(6) If θi > 0 and αi <∞ (i.e., φi is included in the model),
then reestimate αi.

(7) If θi = 0 and αi = ∞, then add φi to the model with
updated αi.

(8) If θi < 0 and αi < ∞, then delete φi from the model
and set αi = ∞.

(9) Estimate the noise level, update σ2 as follows:

σ2 =
∥∥
∥y − { f (Xn, w)

}N
n=1

∥∥
∥

2

(N −M +
∑

i αiΣii)
. (17)

(10) Recomputed or update Σ, μ and all Si and Qi using
(7), (13) to (15).

(11) If converged then terminate, otherwise go to Step 4.

It has to be noticed that the RVM modelling algorithm
is only a multi-input but single-output modelling method.
Therefore, individual model corresponding to each output
needed to be constructed. A multi-input/multioutput model
is then easily be obtained by combining all the individual
models.

3. Experimental Setup

Sample data sets are required for RVM training and are gen-
erally collected through experiments. In this study, the
experiments were conducted on a naturally aspirated, water-
cooled, 4-cylinder, direct-injection diesel engine. The speci-
fications of the engine are shown in Table 1.

The engine was connected to an eddy-current dynamo-
meter, and a control system was used for adjusting its speed
and torque. Ultralow sulfur diesel fuel containing less than
10-ppm-wt sulfur was adopted in the test. The experimental
setup is illustrated in Figure 2.

The experiments were carried out at engine speeds of
1200, 1400, 1600, 1800, and 2000 rpm and each at engine
loads of 28, 70, 140, 210, and 252 Nm. For each test, the

Table 1: Engine specifications.

Model Isuzu 4HF1

Type In-line four cylinders

Maximum power 88 kW/3200 rev min−1

Maximum torque 285 Nm/1800 rev min−1

Bore × stroke 112 mm × 110 mm

Displacement 4334 cc

Compression ratio 19.0 : 1

Fuel injection timing (BTDC) 8◦

Injection pump type Bosch in-line type

Injection nozzle Hole type (with five orifices)

volumetric flow rate of fuel was measured using a measuring
cylinder and then converted into mass consumption rate,
which is used to calculate the brake-specific fuel consump-
tion (BSFC) and the brake thermal efficiency (BTE). The
gaseous species in the engine exhaust including CO, CO2,
and NOx, were measured on a continuous basis using the
Anapol EU5000 exhaust gas analyzer which was suitable for
measuring diesel engine emissions. The Anapol EU5000 used
infrasensors for measuring CO and CO2 concentrations and
used chemical cells for measuring NO and NO2 to obtain
the NOx concentration. The gas analyzer was calibrated with
standard and zero gases before each experiment. Particulate
mass concentration was measured with a tapered element
oscillating microbalance (TEOM, Series 1105, Rupprecht &
Patashnick Co., Inc.). The exhaust gas from the engine was
diluted before passing through the TEOM with a Dekati
minidiluter. The dilution ratio (DR) was evaluated based on
the following equation:

DR = [CO2]exhaust − [CO2]background

[CO2]diluted − [CO2]background
, (18)

where [CO2]exhaust, [CO2]diluted, and [CO2]background repre-
sent the undiluted, the diluted, and the background CO2

concentrations, respectively. The dilution ratio was around
8 in the tests.

At each speed and load, data were recorded after the
engine had reached the steady state, which was indicated by
the lubricating oil temperature and the coolant temperature.
For the purpose of reducing experimental uncertainties
and ensuring repeatability of test data, the data were
recorded continuously for 5 minutes to reduce experimental
uncertainties, and each test was carried out three times. The
average values were used in this research.

Based on the measured data, the following parameters are
derived:

Brake thermal efficiency:

BTE = ηb = Pb
ṁ f LHV

, (19)

Brake specific fuel consumption:

BSFC = ṁ f

Pb
, (20)
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Figure 2: Schematic diagram of experimental setup.

where Pb is the brake power calculated from the measured
torque and engine speed, ṁ f is the mass flow rate of the
diesel fuel and LHV is the lower heating value of the diesel
fuel.

4. Application of RVM and Modelling Results

To evaluate the effectiveness of RVM, the prediction models
were built based on the experimental data. As the collection
of the experimental data is time consuming and costly,
only 22 data sets corresponding to different load and speed
settings were collected from the experiments, which are
shown in Table 2. 18 sets of them were used as the training
data for the model construction, and the rest 4 sets were
used for model validation and testing. Actually, several
weeks were required to collect the twenty-two data sets
professionally. Table 3 illustrates the use of each of the data
sets.

The measured parameters in each of the data sets can be
basically separated into two categories, which are the input
parameters and output parameters. Engine speed and engine
load are the two most important independent parameters
that affect the engine performance and emissions. They are
included in the input parameters. The coolant controls the
engine temperature so the coolant temperature is regarded
as an important factor and is also treated as the input
parameter. The brake-specific fuel consumption and the
brake thermal efficiency represent the engine performance;
thus, they are used as the output parameters. Moreover, the
NOx and particulate matter are two most serious exhaust
emissions from diesel engine. Therefore, the output parame-
ters also consist of the NOx concentration and particle mass
concentration.

The RVM modelling was implemented using MATLAB.
There are three input parameters and four output parame-
ters, indicating that four individual RVM models have to be
built. Moreover, in order to have a more accurate modelling
result and to prevent any input parameter from dominating
the output value, the input data is conventionally normalized
before training [21]. In this study, all the input values were
normalized within the range [−1, 1].

To verify the accuracy of the RVM model, the predicted
output values is compared with the actual values from the
test data sets and shown in Figures 3, 4, 5, and 6.
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Figure 3: Comparison between RVM predicted values and the cor-
responding actual values for BSFC.

The corresponding prediction errors are presented by the
mean absolute percentage error (MAPE); they were evaluated
against the experimental data sets using (21). Moreover,
the fraction of variance (R-squared value) is also calculated
using (22) and (23). The smaller the MAPE, the better the
modelling accuracy is. In addition, the best fitness of R2 is
1

MAPE = 1
Nt

Nt∑

k=1

∣∣
∣
∣
∣
yk − f (Xk)

yk

∣∣
∣
∣
∣× 100%, (21)

R2 = 1−
(∑Nt

k=1

(
yk − f (Xk)

)2

∑Nt

k=1

(
yk − y

)2

)

, (22)

y = 1
Nt

Nt∑

k=1

yk, (23)

where Xk is the kth input vectors for the prediction, f (Xk)
is the prediction value corresponding to Xk, yk is the actual
value corresponding to Xk, y is the mean of the actual value,
and Nt is the number of test data points.
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Table 2: Experimental dataset for model training and validation.

Input parameters Output parameters

Data Engine Engine Tcoolant BSFC BTE NOx PM mass

sets no.
speed
(rpm)

load
(Nm)

(◦C) (g/kWh) (%)
concentration

(ppm)
concentration

(mg/m3)

1 1200 140 80.7 233.16 36.23 665.25 3.363

2 1200 210 82.8 225.23 37.51 900.50 9.501

3 1200 252 83.2 232.83 36.28 957.19 38.403

4 1400 28 79.3 478.57 17.65 199.84 1.233

5 1400 70 80.2 292.57 28.88 325.21 2.049

6 1400 140 80.7 236.49 35.72 610.04 3.378

7 1400 210 83.2 227.94 37.06 818.10 11.484

8 1400 252 83.7 237.09 35.63 836.57 50.906

9 1600 28 80.3 506.77 16.67 175.13 2.203

10 1600 70 80.4 300.99 28.07 303.89 3.045

11 1600 140 81.5 238.77 35.38 566.38 4.880

12 1600 210 82.3 229.92 36.74 795.66 22.049

13 1600 252 84.3 244.17 34.60 814.56 72.437

14 1800 28 80.2 537.04 15.73 170.97 1.936

15 1800 70 80.7 311.98 27.08 283.75 2.836

16 1800 140 81.4 248.01 34.07 526.49 5.323

17 1800 210 83.1 237.34 3.60 748.64 22.093

18 1800 252 85.0 258.16 32.73 730.34 115.988

19 2000 28 80.7 570.84 14.80 171.73 1.550

20 2000 70 80.8 239.71 25.62 280.93 3.418

21 2000 140 82.8 257.99 32.75 507.44 4.192

22 2000 210 83.9 247.54 34.13 683.83 26.865

Table 3: Data set assignment. (T and X refer to training sets and
test sets, resp.)

Engine load/torque (Nm)

28 70 140 210 252

Engine
speed
(rpm)

1200 n/a n/a T T T

1400 T X T T T

1600 T T T T X

1800 T T T X T

2000 T T X T n/a

Table 4 summarizes the training MAPE, the MAPE over
the test data sets, and the fraction of variance for each output
parameter of the RVM model.

5. Comparison of RVM and ANN
Modelling Results

To illustrate the advantages and superiority of the proposed
RVM model, the prediction result was compared with a mul-
tilayer feed-forward neural network with backpropagation.
Since multilayer feed-forward neural network is a well-
known universal estimator [22] and many researches for
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Figure 4: Comparison between RVM predicted values and the cor-
responding actual values for BTE.

diesel engine performance modelling [5–11, 13] were done
based on this configuration, the results from it can be
considered as a rather standard benchmark.
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Table 4: Results of the RVM models.

Output parameters MAPE over the training data sets (%) MAPE over the test data sets (%) R2

BSFC 13.83 11.55 0.70

BTE 1.65 4.12 0.99

NOx emission 1.61 7.17 0.99

Mass concentration 11.52 63.14 0.97

Overall average 7.15 21.50

100

250

400

550

700

850

1000

100 250 400 550 700 850 1000

Experimental value of NOx concentration (ppm)

R
V

M
 p

re
di

ct
ed

 v
al

u
e 

of
 N

O
x

co
n

ce
n

tr
at

io
n

 (
pp

m
)

Figure 5: Comparison between RVM predicted values and the cor-
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A neural network with one hidden layer was built based
on the same training data sets used for RVM modelling.
The neural network consists of 3 input neurons, 20 hidden
neurons, and 4 output neurons. In fact, the number of
hidden nodes was determined by a trial and error analysis,
varying the number of hidden neurons between 3 and 30,
this burden demonstrates the ineffectiveness of the ANN
approach.

The activation function used inside the hidden layer was
the Tan-Sigmoid transfer function, while a pure linear filter
was employed for the output layer. Levenberg-Marquardt
algorithm was used as the training algorithm. The learning
rate of the weight update was set to be 0.05. Figure 7 depicts
the architecture of the neural network.

The same test sets were also chosen so that the RVM and
ANN model can be compared reasonably. The prediction
accuracy of each output in the ANN model is illustrated in
Figures 8, 9, 10, and 11 and Table 5.

Tables 4 and 5 show that the RVM outperforms the
ANN by about 36.45% in terms of average MAPE under
the same test sets. The relatively high training MAPE of the
ANN shows that the data sets is not sufficient for building
such a highly nonlinear model. Furthermore, only one initial
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Figure 7: Architecture of the neural network.

value σ of the basis width is required by RVM, while the
learning rate, number of hidden layers, and number of
hidden neurons are required in ANN, which means a grid
of guessed values for these parameters have to be prepared.

The MAPEs of both RVM and ANN for predicting the
mass concentration of particulates are relatively large as
compared to the other output parameter. This is because the
variation of the mass concentration ranges from 0 to 12 ×
104 μg/m3. Actually, the RVM model tries to fit a function for
the whole range rather than focusing on the low end of range,
which is seen by the R-squared value of 0.97. In contrast, the
ANN model tends to concentrate at the low end of the value.
As a result, the R-squared value for the ANN model is only
0.02, which is unacceptable.
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corresponding actual values for BSFC.
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Figure 9: Comparison between ANN predicted values and the
corresponding actual values for BTE.

Overall, the prediction accuracy of RVM with a small
amount of training data is satisfactory.

6. Conclusions

This research is the first attempt at applying RVM to model
the diesel engine performance and emission characteristics
of NOx and particulate matter under the condition of rare
data. Although the combustion process of the diesel engine
is unknown, the RVM model has successfully demonstrated
the relation between the controllable factors, which are
the engine speeds, engine loads, and coolant temperature,
and the output variables, including the brake-specific fuel
consumption, brake thermal efficiency, NOx emission, and
particulate mass concentrations. Experimental results show
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Figure 10: Comparison between ANN predicted values and the
corresponding actual values for NOx concentration.
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Figure 11: Comparison between ANN predicted values and the
corresponding actual values for PM mass concentration.

that the RVM model is still acceptable even if the data sets
are few. It is believed that more data sets can improve the
accuracy of the model.

Furthermore, the RVM model is also compared with an
ANN model. The results indicate that the average accuracy
of the RVM model is higher than that of the ANN model by
about 36.45%, implying that RVM is superior to ANN.

With the proposed RVM model, experimental efforts can
be reduced significantly as the performance and emissions
of the diesel engine can be predicted easily. By applying
this RVM model as a virtual sensor on diesel vehicles,
the exhaust emissions can be controlled more effectively
by incorporating with some advanced control algorithms,
such as model predictive control. The study of model
predictive diesel emission control based on RVM model will



Journal of Control Science and Engineering 9

Table 5: Results of the ANN model.

Output parameters MAPE over the training data sets (%) MAPE over the test data sets (%) R2

BSFC 14.13 14.12 0.70

BTE 8.66 6.42 0.86

NOx emission 18.15 16.64 0.85

Mass concentration 87.42 98.12 0.02

Overall average 32.09 33.83

be considered as a future work. Since RVM can also perform
online model update, the applications of RVM to online
system modelling and online control will also be explored in
the future.
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