13 research outputs found

    Higher Infection of Dengue Virus Serotype 2 in Human Monocytes of Patients with G6PD Deficiency

    Get PDF
    The prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency is high in Asia. An ex vivo study was conducted to elucidate the association of G6PD deficiency and dengue virus (DENV) infection when many Asian countries are hyper-endemic. Human monocytes from peripheral mononuclear cells collected from 12 G6PD-deficient patients and 24 age-matched controls were infected with one of two DENV serotype 2 (DENV-2) strains–the New Guinea C strain (from a case of dengue fever) or the 16681 strain (from a case of dengue hemorrhagic fever) with a multiplicity of infection of 0.1. The infectivity of DENV-2 in human monocytes was analyzed by flow cytometry. Experimental results indicated that the monocytes of G6PD-deficient patients exhibited a greater levels of infection with DENV-2 New Guinea C strain than did those in healthy controls [mean±SD:33.6%±3.5 (27.2%∼39.2%) vs 20.3%±6.2 (8.0%∼30.4%), P<0.01]. Similar observations were made of infection with the DENV-2 16681 strain [40.9%±3.9 (35.1%∼48.9%) vs 27.4%±7.1 (12.3%∼37.1%), P<0.01]. To our knowledge, this study demonstrates for the first time higher infection of human monocytes in G6PD patients with the dengue virus, which may be important in increasing epidemiological transmission and perhaps with the potential to develop more severe cases pathogenically

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    WWOX,

    No full text

    Perturbation wavelet-neural sliding-mode position control for a voice coil motor driver

    No full text
    [[abstract]]To cope with the nonlinear electro-magneto-mechanical characteristics, this paper proposes a perturbation wavelet neural sliding mode position control (PWSPC) system for a voice coil motor (VCM) driver. A perturbed wavelet neural network (PWNN) approximator is used to online approximate the unknown nonlinear term in the VCM system dynamics. The PWNN approximator uses perturbed wavelet functions to handle the rules uncertainties like interval type-2 fuzzy sets. The structure learning ability enables the PWNN approximator to evolve its structure online. Further, the parameter learning laws and stability analysis are derived in the sense of Lyapunov function; thus, the parameter convergence and system stability can be guaranteed. Finally, the experimental results verify that the proposed PWSPC system can achieve favorable control performance such as good disturbance rejection and good tracking accuracy.[[notice]]補正完
    corecore