2,288 research outputs found
Spin injection between epitaxial Co2.4Mn1.6Ga and an InGaAs quantum well
Electrical spin injection in a narrow [100] In0.2Ga0.8As quantum well in a GaAs p-i-n optical device is reported. The quantum well is located 300 nm from an AlGaAs Schottky barrier and this system is used to compare the efficiencies and temperature dependences of spin injection from Fe and the Heusler alloy Co2.4Mn1.6Ga grown by molecular-beam epitaxy. At 5 K, the injected electron spin polarizations for Fe and Co2.4Mn1.6Ga injectors are 31% and 13%, respectively. Optical detection is carried out in the oblique Hanle geometry. A dynamic nuclear polarization effect below 10 K enhances the magnetic field seen by the injected spins in both devices. The Co2.4Mn1.6Ga thin films are found to have a transport spin polarization of similar to 50% by point contact Andreev reflection conductivity measurements. (c) 2005 American Institute of Physics
Use of an Immobilized Monoclonal Antibody to Examine Integrin α5β1 Signaling Independent of Cell Spreading
Cell attachment to the extracellular matrix (ECM) engages integrin signaling into the cell, but part of the signaling response also stem from cell spreading (3). To analyze specific integrin signaling-mediated responses independent of cell spreading, we developed a method engaging integrin signaling by use of an immobilized anti-integrin monoclonal antibody (mab) directed against the fibronectin (FN) receptor integrin α5β1. ECV 304 cells were plated onto FN or immobilized mab JBS5 (anti-integrin α5β1) or onto poly-L-lysin (P-L-L), which mediates integrin-independent attachment. Cells attached and spread on FN, while cells on JBS5 or P-L-L attached but did not spread. Importantly, plating onto FN or mab JBS5 gave rise to identical integrin-induced responses, including a down-regulation of the cyclin-dependent kinase (Cdk2) inhibitors p21(CIP1) and p27(KIP1), while attachment to P-L-L did not. We conclude that engagement of the FN-receptor integrin α5β1 induces integrin signaling regulating the Cdk2-inhibitors independent of cell spreading and present a method for how integrin signaling can be analyzed separate from the effects of cell spreading
Stroke genetics: prospects for personalized medicine.
Epidemiologic evidence supports a genetic predisposition to stroke. Recent advances, primarily using the genome-wide association study approach, are transforming what we know about the genetics of multifactorial stroke, and are identifying novel stroke genes. The current findings are consistent with different stroke subtypes having different genetic architecture. These discoveries may identify novel pathways involved in stroke pathogenesis, and suggest new treatment approaches. However, the already identified genetic variants explain only a small proportion of overall stroke risk, and therefore are not currently useful in predicting risk for the individual patient. Such risk prediction may become a reality as identification of a greater number of stroke risk variants that explain the majority of genetic risk proceeds, and perhaps when information on rare variants, identified by whole-genome sequencing, is also incorporated into risk algorithms. Pharmacogenomics may offer the potential for earlier implementation of 'personalized genetic' medicine. Genetic variants affecting clopidogrel and warfarin metabolism may identify non-responders and reduce side-effects, but these approaches have not yet been widely adopted in clinical practice
Deliquescence of NaCl–NaNO(3), KNO(3)–NaNO(3), and NaCl–KNO(3 )salt mixtures from 90 to 120°C
We conducted reversed deliquescence experiments in saturated NaCl–NaNO(3)–H(2)O, KNO(3)–NaNO(3)–H(2)O, and NaCl–KNO(3)–H(2)O systems from 90 to 120°C as a function of relative humidity and solution composition. NaCl, NaNO(3), and KNO(3 )represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV. Discrepancy between model prediction and experiment can be as high as 8% for relative humidity and 50% for dissolved ion concentration. The discrepancy is attributed primarily to the use of 25°C models for Cl–NO(3 )and K–NO(3 )ion interactions in the current Yucca Mountain Project high-temperature Pitzer model to describe the nonideal behavior of these highly concentrated solutions
Blueberry Advisory Committee Research Report
The 1984 edition of the Blueberry Progress Reports was prepared for the Maine Blueberry Commission and the University of Maine Blueberry Advisory Committee by researchers with the Maine Agricultural Experiment Station and Maine Cooperative Extension Service at the University of Maine, Orono. Projects in this report include:
1. Control, biology, and ecology of insects affecting lowbush blueberries .
2. Chemical control of mummyberry disease (Monilinia vaccinii-corymbosi)
3. New Fungicides for control of Botrytis blossom blight
4. Nutritional survey of selected lowbush blueberry fields
5. Interaction of fertility and pruning practices on soil characteristics and lowbush blueberry growth and yield
6. Long term effects of N and NPK fertilizer on plant growth and yield
7. The effect of N fertilization on clonal spread
8. Nutritional responses of the lowbush blueberry in new plantings as related to early establishment
9. The effect of several mulches on frost heaving, soil moisture, soil temperature and rhizome development
10. Effectiveness of mulches and planted lowbush blueberry seedlings for stabilizing soils and increasing plant cover
11. Effect of surface mulches on stabilizing lowbush blueberry soil in barren areas
12. Frequency of fertility application for establishment of lowbush blueberry seedlings
13. Slow release vs liquid fertilizer for establishment of lowbush blueberry seedlings
14. Comparison of rooted cuttings and tissue culture propagated lowbush blueberry plants
15. The effect of growth regulator formulations on growth and rhizome production of the lowbush blueberry
16. Unburned, mowed fields
17. Blueberry concentrate
18. Blueberry product development
19. Dehydrated blueberries
20. Low-calorie blueberry jellies
21. Hexazinone and terbacil mixture for weed control
22. Hexazinone and atrazine mixture for weed control
23. Effect of hexazinone and nitrogen or nitrogen-phosphorus fertilizer on lowbush blueberry plants
24. Hand-wiper applications of herbicides on birch, maple and willow
25. Glyphosate applied after leaf drop for bunchberry control
26. Napropamide for seedling weed control
27. PP333 plant growth regulator
28. Dichlobenil for bunchberry control
29. Effect of hexazinone on weed and blueberry populations
30. Fluazifop-butyl for grass control
31. Hand-wiping and cutting treatments for dogbane
32. Evaluation of airblast sprayer application of asulam for bracken fern control
33. Evaluation of spot treatment of woody weeds with 2,4-D in oil
34. Steam heat as a control of mummyberry diseas
Evaporative evolution of a Na–Cl–NO(3)–K–Ca–SO(4)–Mg–Si brine at 95°C: Experiments and modeling relevant to Yucca Mountain, Nevada
A synthetic Topopah Spring Tuff water representative of one type of pore water at Yucca Mountain, NV was evaporated at 95°C in a series of experiments to determine the geochemical controls for brines that may form on, and possibly impact upon the long-term integrity of waste containers and drip shields at the designated high-level, nuclear-waste repository. Solution chemistry, condensed vapor chemistry, and precipitate mineralogy were used to identify important chemical divides and to validate geochemical calculations of evaporating water chemistry using a high temperature Pitzer thermodynamic database. The water evolved toward a complex "sulfate type" brine that contained about 45 mol % Na, 40 mol % Cl, 9 mol % NO(3), 5 mol % K, and less than 1 mol % each of SO(4), Ca, Mg, ∑CO(2)(aq), F, and Si. All measured ions in the condensed vapor phase were below detection limits. The mineral precipitates identified were halite, anhydrite, bassanite, niter, and nitratine. Trends in the solution composition and identification of CaSO(4 )solids suggest that fluorite, carbonate, sulfate, and magnesium-silicate precipitation control the aqueous solution composition of sulfate type waters by removing fluoride, calcium, and magnesium during the early stages of evaporation. In most cases, the high temperature Pitzer database, used by EQ3/6 geochemical code, sufficiently predicts water composition and mineral precipitation during evaporation. Predicted solution compositions are generally within a factor of 2 of the experimental values. The model predicts that sepiolite, bassanite, amorphous silica, calcite, halite, and brucite are the solubility controlling mineral phases
The role of the right temporoparietal junction in perceptual conflict: detection or resolution?
The right temporoparietal junction (rTPJ) is a polysensory cortical area that plays a key role in perception and awareness. Neuroimaging evidence shows activation of rTPJ in intersensory and sensorimotor conflict situations, but it remains unclear whether this activity reflects detection or resolution of such conflicts. To address this question, we manipulated the relationship between touch and vision using the so-called mirror-box illusion. Participants' hands lay on either side of a mirror, which occluded their left hand and reflected their right hand, but created the illusion that they were looking directly at their left hand. The experimenter simultaneously touched either the middle (D3) or the ring finger (D4) of each hand. Participants judged, which finger was touched on their occluded left hand. The visual stimulus corresponding to the touch on the right hand was therefore either congruent (same finger as touch) or incongruent (different finger from touch) with the task-relevant touch on the left hand. Single-pulse transcranial magnetic stimulation (TMS) was delivered to the rTPJ immediately after touch. Accuracy in localizing the left touch was worse for D4 than for D3, particularly when visual stimulation was incongruent. However, following TMS, accuracy improved selectively for D4 in incongruent trials, suggesting that the effects of the conflicting visual information were reduced. These findings suggest a role of rTPJ in detecting, rather than resolving, intersensory conflict
The processing and impact of dissolved riverine nitrogen in the Arctic Ocean
© The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 35 (2012): 401-415, doi:10.1007/s12237-011-9417-3.Although the Arctic Ocean is the most riverine-influenced of all of the world’s oceans, the importance of terrigenous nutrients in this environment is poorly understood. This study couples estimates of circumpolar riverine nutrient fluxes from the PARTNERS (Pan-Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments) Project with a regionally configured version of the MIT general circulation model to develop estimates of the distribution and availability of dissolved riverine N in the Arctic Ocean, assess its importance for primary production, and compare these estimates to potential bacterial production fueled by riverine C. Because riverine dissolved organic nitrogen is remineralized slowly, riverine N is available for uptake well into the open ocean. Despite this, we estimate that even when recycling is considered, riverine N may support 0.5–1.5 Tmol C year−1 of primary production, a small proportion of total Arctic Ocean photosynthesis. Rapid uptake of dissolved inorganic nitrogen coupled with relatively high rates of dissolved organic nitrogen regeneration in N-limited nearshore regions, however, leads to potential localized rates of riverine-supported photosynthesis that represent a substantial proportion of nearshore production.Funding for this work was provided through NSFOPP-
0229302 and NSF-OPP-0732985.Support to SET was additionally
provided by an NSERC Postdoctoral Fellowship
- …