15 research outputs found

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems

    Correspondence between the habitat of the threatened pudĂș (Cervidae) and the national protected-area system of Chile

    Full text link
    BACKGROUND: Currently, many species are facing serious conservation problems due to habitat loss. The impact of the potential loss of biodiversity associated with habitat loss is difficult to measure. This is particularly the case with inconspicuous species such as the threatened pudĂș (Pudu puda), an endemic Cervidae of temperate forests of Chile and Argentina. To evaluate the effectiveness of the Chilean protected-area system in protecting the habitat of the pudĂș, we measured the congruence between this specie’s potential distribution and the geographical area occupied by the protected areas in central and southern Chile. The measurements of congruency were made using the Maxent modeling method. RESULTS: The potential habitat of the pudĂș was found to be poorly represented in the system (3–8 %) and even the most suitable areas for the species are not currenly protected. According to these results, the protected area network cannot be considered as a key component of the conservation strategy for this species. CONCLUSIONS: The results presented here also serve as a guide for the reevaluation of current pudĂș conservation strategies, for the design of new field studies to detect the presence of this species in human-disturbed areas or remaining patches of native forest, and for the implementation of corridors to maximize the success of conservation efforts. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12898-015-0055-7) contains supplementary material, which is available to authorized users

    Inflammation-linked adaptations in dermal microvascular reactivity accompany the development of obesity and type 2 diabetes

    No full text
    International audienceBackground/ObjectivesThe increased prevalence of obesity has prompted great strides in our understanding of specific adipose depots and their involvement in cardio-metabolic health. However, the impact of obesity on dermal white adipose tissue (dWAT) and dermal microvascular functionality remains unclear. This study aimed to investigate the temporal changes that occur in dWAT and dermal microvascular functionality during the development of diet-induced obesity and type 2 diabetes in mice.MethodsMetabolic phenotyping of a murine model of hypercaloric diet (HCD)-induced obesity and type 2 diabetes was performed at three time points that reflected three distinct stages of disease development; 2 weeks of HCD-overweight-metabolically healthy, 4 weeks of HCD-obese-prediabetic and 12 weeks of HCD-obese-type 2 diabetic mice. Expansion of dWAT was characterized histologically, and changes in dermal microvascular reactivity were assessed in response to pressure and the vasodilators SNP and Ach.ResultsHCD resulted in a progressive expansion of dWAT and increased expression of pro-inflammatory markers (IL1ÎČ and COX-2). Impairments in pressure-induced (PIV) and Ach-induced (endothelium-dependent) vasodilation occurred early, in overweight-metabolically healthy mice. Residual vasodilatory responses were NOS-independent but sensitive to COX inhibition. These changes were associated with reductions in NO and adiponectin bioavailability, and rescued by exogenous adiponectin or hyperinsulinemia. Obese-prediabetic mice continued to exhibit impaired Ach-dependent vasodilation but PIV appeared normalized. This normalization coincided with elevated endogenous adiponectin and insulin levels, and was sensitive to NOS, COX and PI3K, inhibition. In obese-type 2 diabetic mice, both Ach-stimulated and pressure-induced vasodilatory responses were increased through enhanced COX-2-dependent prostaglandin response.ConclusionsWe demonstrate that the development of obesity, metabolic dysfunction and type 2 diabetes, in HCD-fed mice, is accompanied by increased dermal adiposity and associated metaflammation in dWAT. Importantly, these temporal changes are also linked to disease stage-specific dermal microvascular reactivity, which may reflect adaptive mechanisms driven by metaflammation
    corecore