7 research outputs found

    Relapse patterns in NMOSD: evidence for earlier occurrence of optic neuritis and possible seasonal variation

    Get PDF
    Neuromyelitis optica spectrum disorders (NMOSD) and multiple sclerosis (MS) show overlap in their clinical features. We performed an analysis of relapses with the aim of determining differences between the two conditions. Cases of NMOSD and age- and sex-matched MS controls were collected from across Australia and New Zealand. Demographic and clinical information, including relapse histories, were recorded using a standard questionnaire. There were 75 cases of NMOSD and 101 MS controls. There were 328 relapses in the NMOSD cases and 375 in MS controls. Spinal cord and optic neuritis attacks were the most common relapses in both NMOSD and MS. Optic neuritis (p P = 0.002) were more common in NMOSD and other brainstem attacks were more common in MS (p P = 0.065). Optic neuritis and transverse myelitis are the most common types of relapse in NMOSD and MS. Optic neuritis tends to occur more frequently in NMOSD prior to the age of 30, with transverse myelitis being more common thereafter. Relapses in NMOSD were more severe. A seasonal bias for relapses in spring-summer may exist in NMOSD

    AQP4 antibody assay sensitivity comparison in the era of the 2015 diagnostic criteria for NMOSD

    No full text
    We have compared five different assays for antibodies to aquaporin-4 in 181 cases of suspected Neuromyelitis optica spectrum disorders (NMOSD) and 253 controls to assess their relative utility. As part of a clinically-based survey of NMOSD in Australia and New Zealand, cases of suspected NMOSD were referred from 23 centers. Clinical details and magnetic imaging were reviewed and used to apply the 2015 IPND diagnostic criteria. In addition, 101 age- and sex-matched patients with multiple sclerosis were referred. Other inflammatory disease (n = 49) and healthy controls (n = 103) were also recruited. Samples from all participants were tested using tissue-based indirect immunofluorescence assays and a subset were tested using four additional ELISA and cell-based assays. Antibodies to myelin oligodendrocyte glycoprotein (MOG) were also assayed. All aquaporin-4 antibody assays proved to be highly specific. Sensitivities ranged from 60 to 94%, with cell-based assays having the highest sensitivity. Antibodies to MOG were detected in 8/79 (10%) of the residual suspected cases of NMOSD. Under the 2015 IPND diagnostic criteria for NMOSD, cell-based assays for aquaporin-4 are sensitive and highly specific, performing better than tissue-based and ELISA assays. A fixed cell-based assay showed near-identical results to a live-cell based assay. Antibodies to MOG account for only a small number of suspected cases

    AQP4 antibody assay sensitivity comparison in the era of the 2015 diagnostic criteria for NMOSD

    No full text
    We have compared five different assays for antibodies to aquaporin-4 in 181 cases of suspected Neuromyelitis optica spectrum disorders (NMOSD) and 253 controls to assess their relative utility. As part of a clinically-based survey of NMOSD in Australia and New Zealand, cases of suspected NMOSD were referred from 23 centers. Clinical details and magnetic imaging were reviewed and used to apply the 2015 IPND diagnostic criteria. In addition, 101 age- and sex-matched patients with multiple sclerosis were referred. Other inflammatory disease (n = 49) and healthy controls (n = 103) were also recruited. Samples from all participants were tested using tissue-based indirect immunofluorescence assays and a subset were tested using four additional ELISA and cell-based assays. Antibodies to myelin oligodendrocyte glycoprotein (MOG) were also assayed. All aquaporin-4 antibody assays proved to be highly specific. Sensitivities ranged from 60 to 94%, with cell-based assays having the highest sensitivity. Antibodies to MOG were detected in 8/79 (10%) of the residual suspected cases of NMOSD. Under the 2015 IPND diagnostic criteria for NMOSD, cell-based assays for aquaporin-4 are sensitive and highly specific, performing better than tissue-based and ELISA assays. A fixed cell-based assay showed near-identical results to a live-cell based assay. Antibodies to MOG account for only a small number of suspected cases

    Incidence and prevalence of NMOSD in Australia and New Zealand

    No full text
    Objectives We have undertaken a clinic-based survey of neuromyelitis optica spectrum disorders (NMOSDs) in Australia and New Zealand to establish incidence and prevalence across the region and in populations of differing ancestry. Background NMOSD is a recently defined demyelinating disease of the central nervous system (CNS). The incidence and prevalence of NMOSD in Australia and New Zealand has not been established. Methods Centres managing patients with demyelinating disease of the CNS across Australia and New Zealand reported patients with clinical and laboratory features that were suspicious for NMOSD. Testing for aquaporin 4 antibodies was undertaken in all suspected cases. From this group, cases were identified who fulfilled the 2015 Wingerchuk diagnostic criteria for NMOSD. A capture–recapture methodology was used to estimate incidence and prevalence, based on additional laboratory identified cases. Results NMOSD was confirmed in 81/170 (48%) cases referred. Capture–recapture analysis gave an adjusted incidence estimate of 0.37 (95% CI 0.35 to 0.39) per million per year and a prevalence estimate for NMOSD of 0.70 (95% CI 0.61 to 0.78) per 100 000. NMOSD was three times more common in the Asian population (1.57 (95% CI 1.15 to 1.98) per 100 000) compared with the remainder of the population (0.57 (95% CI 0.50 to 0.65) per 100 000). The latitudinal gradient evident in multiple sclerosis was not seen in NMOSD. Conclusions NMOSD incidence and prevalence in Australia and New Zealand are comparable with figures from other populations of largely European ancestry. We found NMOSD to be more common in the population with Asian ancestry.</p

    The clinical profile of NMOSD in Australia and New Zealand

    No full text
    Neuromyelitis optica spectrum disorders (NMOSD) are an inflammation of the central nervous system associated with autoantibodies to aquaporin-4. We have undertaken a clinic-based survey of NMOSD in the Australia and New Zealand populations with the aim of characterising the clinical features and establishing the value of recently revised diagnostic criteria. Cases of possible NMOSD and age and sex-matched controls with multiple sclerosis (MS) were referred from centres across Australia and New Zealand. Cases were classified as NMOSD if they met the 2015 IPND criteria and remained as suspected NMOSD if they did not. Clinical and paraclinical data were compared across the three groups. NMOSD was confirmed in 75 cases and 89 had suspected NMOSD. There were 101 controls with MS. Age at onset, relapse rates and EDSS scores were significantly higher in NMOSD than in MS. Lesions and symptoms referable to the optic nerve were more common in NMOSD whereas brainstem, cerebellar and cerebral lesions were more common in MS. Longitudinally extensive spinal cord lesions were seen in 48/71 (68%) of cases with NMOSD. Elevations of CSF, white cell count and protein were more common in NMOSD. We have confirmed a clinical pattern of NMOSD that has been seen in several geographical regions. We have demonstrated the clinical utility of the current diagnostic criteria. Distinct patterns of disease are evident in NMOSD and MS, but there remains a large number of patients with NMOSD-like features who do not meet the current diagnostic criteria for NMOSD and remain a diagnostic challenge

    NMOSD and MS prevalence in the Indigenous populations of Australia and New Zealand

    No full text
    Background We studied the prevalence of neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS) in Indigenous populations of Australia and New Zealand with the aim of assessing potential differences. Methods Cases of possible NMOSD and MS were collected from Australia and New Zealand. Clinical details, MR imaging, and serologic results were used to apply 2015 IPND diagnostic criteria for NMOSD and 2010 McDonald criteria for MS. Frequencies of self-determined ethnic ancestry were calculated for confirmed NMOSD, suspected NMOSD, and MS. Prevalence rates for NMOSD and MS according to ancestry were compared. Results There were 75 cases with NMOSD, 89 with suspected NMSOD, and 101 with MS. NMOSD cases were more likely to have Asian, Indigenous, or Other ancestry compared to suspected NMOSD or MS. There were no differences in the clinical phenotype of NMOSD seen in Indigenous compared to European ancestry populations. Per 100,000, the prevalence estimate for NMOSD in people with Māori ancestry was 1.50 (95% CI 0.52–2.49) which was similar to those with Asian ancestry 1.57 (95% CI 1.15–1.98). NMOSD prevalence in Australian Aboriginal and Torres Strait Islander populations was 0.38 (95% CI 0.00–0.80) per 100,000. Conclusion The prevalence of NMOSD in the Māori population is similar to South East Asian countries, reflecting their historical origins. The prevalence of MS in this group is intermediate between those with South East Asian and European ancestry living in New Zealand. Both NMOSD and particularly MS appear to be uncommon in the Indigenous populations of Australia
    corecore