96 research outputs found

    Amplitude equations near pattern forming instabilities for strongly driven ferromagnets

    Full text link
    A transversally driven isotropic ferromagnet being under the influence of a static external and an uniaxial internal anisotropy field is studied. We consider the dissipative Landau-Lifshitz equation as the fundamental equation of motion and treat it in 1+11+1~dimensions. The stability of the spatially homogeneous magnetizations against inhomogeneous perturbations is analyzed. Subsequently the dynamics above threshold is described via amplitude equations and the dependence of their coefficients on the physical parameters of the system is determined explicitly. We find soft- and hard-mode instabilities, transitions between sub- and supercritical behaviour, various bifurcations of higher codimension, and present a series of explicit bifurcation diagrams. The analysis of the codimension-2 point where the soft- and hard-mode instabilities coincide leads to a system of two coupled Ginzburg-Landau equations.Comment: LATeX, 25 pages, submitted to Z.Phys.B figures available via [email protected] in /pub/publications/frank/zpb_95 (postscript, plain or gziped

    Spinor condensates and light scattering from Bose-Einstein condensates

    Full text link
    These notes discuss two aspects of the physics of atomic Bose-Einstein condensates: optical properties and spinor condensates. The first topic includes light scattering experiments which probe the excitations of a condensate in both the free-particle and phonon regime. At higher light intensity, a new form of superradiance and phase-coherent matter wave amplification were observed. We also discuss properties of spinor condensates and describe studies of ground--state spin domain structures and dynamical studies which revealed metastable excited states and quantum tunneling.Comment: 58 pages, 33 figures, to appear in Proceedings of Les Houches 1999 Summer School, Session LXXI

    Antibacterial Resistance Leadership Group 2.0: Back to Business

    Get PDF
    In December 2019, the Antibacterial Resistance Leadership Group (ARLG) was awarded funding for another 7-year cycle to support a clinical research network on antibacterial resistance. ARLG 2.0 has 3 overarching research priorities: infections caused by antibiotic-resistant (AR) gram-negative bacteria, infections caused by AR gram-positive bacteria, and diagnostic tests to optimize use of antibiotics. To support the next generation of AR researchers, the ARLG offers 3 mentoring opportunities: the ARLG Fellowship, Early Stage Investigator seed grants, and the Trialists in Training Program. The purpose of this article is to update the scientific community on the progress made in the original funding period and to encourage submission of clinical research that addresses 1 or more of the research priority areas of ARLG 2.0

    On auscultation and percussion

    No full text
    • …
    corecore