66 research outputs found

    p53 mutation with frequent novel codons but not a mutator phenotype in BRCA1- and BRCA2-associated breast tumours

    Get PDF
    The status of p53 was investigated in breast tumours arising in germ-line carriers of mutant alleles of BRCA1 and BRCA2 and in a control series of sporadic breast tumours. p53 expression was detected in 20/26 (77%) BRCA1-, 10/22 (45%) BRCA2-associated and 25/72 (35%) grade-matched sporadic tumours. Analysis of p53 sequence revealed that the gene was mutant in 33/50 (66%) BRCA-associated tumours, whereas 7/20 (35%) sporadic grade-matched tumours contained p53 mutation (P < 0.05). A number of the mutations detected in the BRCA-associated tumours have not been previously described in human cancer databases, whilst others occur extremely rarely. Analysis of additional genes, p16(INK4), Ki-ras and β-globin revealed absence or very low incidence of mutations, suggesting that the higher frequency of p53 mutation in the BRCA-associated tumours does not reflect a generalized increase in susceptibility to the acquisition of somatic mutation. Furthermore, absence of frameshift mutations in the polypurine tracts present in the coding sequence of the TGF β type II receptor (TGF β IIR) and Bax implies that loss of function of BRCA1 or BRCA2 does not confer a mutator phenotype such as that found in tumours with microsatellite instability (MSI). p21(Waf1) was expressed in BRCA-associated tumours regardless of p53 status and, furthermore, some tumours expressing wild-type p53 did not express detectable p21(Waf1). These data do not support, therefore, the simple model based on studies of BRCA-/- embryos, in which mutation of p53 in BRCA-associated tumours results in loss of p21(Waf1) expression and deregulated proliferation. Rather, they imply that proliferation of such tumours will be subject to multiple mechanisms of growth regulation

    Identification of a novel vertebrate homeobox gene expressed in haematopoietic cells

    No full text
    This paper describes the characterisation of a novel chicken homeobox gene, Prh, whose encoded homeodomain sequence differs significantly from those of other factors which have been described. As expected, a portion of the encoded protein, containing the homeodomain, is capable of sequence-specific DNA-binding. Outside the homeodomain, Prh, possesses an N-terminal region extremely rich in proline residues and a C-terminal acidic portion, either of which may function as transcription regulatory domains. Since, among the chicken tissues tested, its transcription is restricted to haematopoietic cells, lung and liver, it may function in tissue-specific patterns of gene regulation. Human and murine Prh homologues have also been identified; so it is likely that such genes are a general feature of vertebrate genomes

    Stride lengths, speed and energy costs in walking of Australopithecus afarensis:Using evolutionary robotics to predict locomotion of early human ancestors

    No full text
    This paper uses techniques from evolutionary robotics to predict the most energy-efficient upright walking gait for the early human relative Australopithecus afarensis, based on the proportions of the 3.2 million year old AL 288-1 ‘Lucy’ skeleton, and matches predictions against the nearly contemporaneous (3.5–3.6 million year old) Laetoli fossil footprint trails. The technique creates gaits de novo and uses genetic algorithm optimization to search for the most efficient patterns of simulated muscular contraction at a variety of speeds. The model was first verified by predicting gaits for living human subjects, and comparing costs, stride lengths and speeds to experimentally determined values for the same subjects. Subsequent simulations for A. afarensis yield estimates of the range of walking speeds from 0.6 to 1.3 m s(−1) at a cost of 7.0 J kg(−1) m(−1) for the lowest speeds, falling to 5.8 J kg(−1) m(−1) at 1.0 m s(−1), and rising to 6.2 J kg(−1) m(−1) at the maximum speed achieved. Speeds previously estimated for the makers of the Laetoli footprint trails (0.56 or 0.64 m s(−1) for Trail 1, 0.72 or 0.75 m s(−1) for Trail 2/3) may have been underestimated, substantially so for Trail 2/3, with true values in excess of 0.7 and 1.0 m s(−1), respectively. The predictions conflict with suggestions that A. afarensis used a ‘shuffling’ gait, indicating rather that the species was a fully competent biped
    • …
    corecore