519 research outputs found

    Synchronized stationary clouds in a static fluid

    Full text link
    The existence of stationary bound states for the hydrodynamic velocity field between two concentric cylinders is established. We argue that rotational motion, together with a trapping mechanism for the associated field, is sufficient to mitigate energy dissipation between the cylinders, thus allowing the existence of infinitely long lived modes, which we dub stationary clouds. We demonstrate the existence of such stationary clouds for sound and surface waves when the fluid is static and the internal cylinder rotates with constant angular velocity Ω\Omega. These setups provide a unique opportunity for the first experimental observation of synchronized stationary clouds. As in the case of bosonic fields around rotating black holes and black hole analogues, the existence of these clouds relies on a synchronization condition between Ω\Omega and the angular phase velocity of the cloud.Comment: v2: 7 pages, 4 figures. Accepted for publication in Physics Letters

    Is the equivalence for the response of static scalar sources in the Schwarzschild and Rindler spacetimes valid only in four dimensions?

    Full text link
    It was shown recently that in four dimensions scalar sources with fixed proper acceleration minimally coupled to a massless Klein-Gordon field lead to the same responses when they are (i) uniformly accelerated in Minkowski spacetime (in the inertial vacuum) and (ii) static in the Schwarzschild spacetime (in the Unruh vacuum). Here we show that this equivalence is broken if the spacetime dimension is more than four.Comment: 4 pages, 1 figur

    Twisting shadows: light rings, lensing and shadows of black holes in swirling universes

    Full text link
    Using the Ernst formalism, a novel solution of vacuum General Relativity was recently obtained [1], describing a Schwarzschild black hole (BH) immersed in a non-asymptotically flat rotating background, dubbed swirling universe, with the peculiar property that north and south hemispheres spin in opposite directions. We investigate the null geodesic flow and, in particular, the existence of light rings in this vacuum geometry. By evaluating the total topological charge ww, we show that there exists one unstable light ring (w=−1w=-1) for each rotation sense of the background. We observe that the swirling background drives the Schwarzschild BH light rings outside the equatorial plane, displaying counter-rotating motion with respect to each other, while (both) co-rotating with respect to the swirling universe. Using backwards ray-tracing, we obtain the shadow and gravitational lensing effects, revealing a novel feature for observers on the equatorial plane: the BH shadow displays an odd Z2\mathbb{Z}_2 (north-south) symmetry, inherited from the same type of symmetry of the spacetime itself: a twisted shadow.Comment: 21 pages, 14 figure

    Low-energy sector quantization of a massless scalar field outside a Reissner-Nordstrom black hole and static sources

    Get PDF
    We quantize the low-energy sector of a massless scalar field in the Reissner-Nordstrom spacetime. This allows the analysis of processes involving soft scalar particles occurring outside charged black holes. In particular, we compute the response of a static scalar source interacting with Hawking radiation using the Unruh (and the Hartle-Hawking) vacuum. This response is compared with the one obtained when the source is uniformly accelerated in the usual vacuum of the Minkowski spacetime with the same proper acceleration. We show that both responses are in general different in opposition to the result obtained when the Reissner-Nordstrom black hole is replaced by a Schwarzschild one. The conceptual relevance of this result is commented.Comment: 12 pages (REVTEX), no figure

    Latent solitons, black strings, black branes, and equations of state in Kaluza-Klein models

    Full text link
    In Kaluza-Klein models with an arbitrary number of toroidal internal spaces, we investigate soliton solutions which describe the gravitational field of a massive compact object. We single out the physically interesting solution corresponding to a point-like mass. For the general solution we obtain equations of state in the external and internal spaces. These equations demonstrate that the point-like mass soliton has dust-like equations of state in all spaces. We also obtain the PPN parameters, which give the possibility to obtain the formulas for perihelion shift, deflection of light and time delay of radar echoes. Additionally, the gravitational experiments lead to a strong restriction on the parameter of the model: τ=−(2.1±2.3)×10−5\tau = -(2.1\pm 2.3)\times 10^{-5}. The point-like mass solution contradicts this restriction. The condition τ=0\tau=0 satisfies the experimental limitation and defines a new class of solutions which are indistinguishable from general relativity. We call such solutions latent solitons. Black strings and black branes belong to this class. Moreover, the condition of stability of the internal spaces singles out black strings/branes from the latent solitons and leads uniquely to the black string/brane equations of state pi=−ϵ/2p_i=-\epsilon/2, in the internal spaces and to the number of the external dimensions d0=3d_0=3. The investigation of multidimensional static spherically symmetric perfect fluid with dust-like equation of state in the external space confirms the above results.Comment: 8 pages, Revtex4, no figures, minor changes adde
    • …
    corecore