40 research outputs found

    The abrupt onset of the modern South Asian Monsoon winds

    Get PDF
    The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment's content of particulate organic matter. A weaker 'proto-monsoon' existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system

    A two million year record of low-latitude aridity linked to continental weathering from the Maldives

    Get PDF
    Indian-Asian monsoon has oscillated between warm/wet interglacial periods and cool/dry glacial periods with periodicities closely linked to variations in Earth’s orbital parameters. However, processes that control wet versus dry, i.e. aridity cyclical periods on the orbital time-scale in the low latitudes of the Indian-Asian continent remain poorly understood because records over millions of years are scarce. The sedimentary record from International Ocean Discovery Program (IODP) Expedition 359 provides a well-preserved, high-resolution, continuous archive of lithogenic input from the Maldives reflecting on low-latitude aridity cycles. Variability within the lithogenic component of sedimentary deposits of the Maldives results from changes in monsoon-controlled sedimentary sources. Here, we present X-ray fluorescence (XRF) core-scanning results from IODP Site U1467 for the past two million years, allowing full investigation of orbital periodicities. We specifically use the Fe/K as a terrestrial climate proxy reflecting on wet versus dry conditions in the source areas of the Indian-Asian landmass, or from further afield. The Fe/K record shows orbitally forced cycles reflecting on changes in the relative importance of aeolian (stronger winter monsoon) during glacial periods versus fluvial supply (stronger summer monsoon) during interglacial periods. For our chronology, we tuned the Fe/K cycles to precessional insolation changes, linking Fe/K maxima/minima to insolation minima/maxima with zero phase lag. Wavelet and spectral analyses of the Fe/K record show increased dominance of the 100 kyr cycles after the Mid Pleistocene Transition (MPT) at 1.25 Ma in tandem with the global ice volume benthic δ 18 O data (LR04 record). In contrast to the LR04 record, the Fe/K profile resolves 100-kyr-like cycles around the 130 kyr frequency band in the interval from 1.25 to 2 million years. These 100-kyr-like cycles likely form by bundling of two or three obliquity cycles, indicating that low-latitude Indian-Asian climate variability reflects on increased tilt sensitivity to regional eccentricity insolation changes (pacing tilt cycles) prior to the MPT. The implication of appearance of the 100 kyr cycles in the LR04 and the Fe/K records since the MPT suggests strengthening of a climate link between the low and high latitudes during this period of climate transition. The Correction to this article has been published in Progress in Earth and Planetary Science 2019 6:21 - https://doi.org/10.1186/s40645-019-0259-

    Preparing for coastal change

    No full text

    The 'Shackleton Site' (IODP Site U1385) on the Iberian Margin

    Get PDF
    Nick Shackleton’s research on piston cores from the Iberian margin highlighted the importance of this region for providing high-fidelity records of millennial-scale climate variability, and for correlating climate events from the marine environment to polar ice cores and European terrestrial sequences. During the Integrated Ocean Drilling Program (IODP) Expedition 339, we sought to extend the Iberian margin sediment record by drilling with the D/V JOIDES Resolution. Five holes were cored at Site U1385 using the advanced piston corer (APC) system to a maximum depth of ∼ 155.9 m below sea floor (m b.s.f.). Immediately after the expedition, cores from all holes were analyzed by core scanning X-ray fluorescence (XRF) at 1 cm spatial resolution. Ca/Ti data were used to accurately correlate from hole-to-hole and construct a composite spliced section, containing no gaps or disturbed intervals to 166.5 m composite depth (mcd). A low-resolution (20 cm sample spacing) oxygen isotope record confirms that Site U1385 contains a continuous record of hemipelagic sedimentation from the Holocene to 1.43 Ma (Marine Isotope Stage 46). The sediment profile at Site U1385 extends across the middle Pleistocene transition (MPT) with sedimentation rates averaging ∼ 10 cm kyr−1. Strongprecession cycles in colour and elemental XRF signals provide a powerful tool for developing an orbitally tuned reference timescale. Site U1385 is likely to become an important type section for marine–ice–terrestrial core correlations and the study of orbital- and millennial-scale climate variability
    corecore