1,293 research outputs found
Localization of tenascin in human skin wounds
A total of 56 surgically treated human skin wounds with a wound age between 8h and 7 months were investigated. Tenascin was visualized by immunohistochemistry and appeared first in the wound area pericellularly around fibroblastic cells approximately 2 days after wounding. A network-like interstitial positive staining pattern was first detectable in 3-day-old skin wounds. In all wounds with an age of 5 days or more, intensive reactivity for tenascin could be observed in the lesional area (dermal-epidermal junction, wound edge, areas of bleeding). In wounds with an age of more than approximately 1.5 months no positive staining occurred in the scar tissue. In conclusion, for forensic purposes, positive staining for tenascin restricted to the pericellular area of fibroblastic cells indicates a wound age of at least 2 days. Network-like structures appear after approximately 3 days or more. Since tenascin seems to be regularly detectable in skin wounds older than 5 days, the lack of a positive reaction in a sufficient number of specimens indicates a wound age of less than 5 days. The lack of a positive reaction in the granulation tissue of wounds with advanced wound age indicates a survival time of more than about 1.5 months, but a positive staining in older wounds cannot be excluded
Photo-induced enhanced Raman spectroscopy (PIERS): Sensing atomic-defects, explosives and biomolecules
Enhanced Raman relies heavily on finding ideal hot-spot regions which enable significant enhancement factors. In
addition, the termed “chemical enhancement” aspect of SERS is often neglected due to its relatively low enhancement
factors, in comparison to those of electromagnetic (EM) nature. Using a metal-semiconductor hybrid system, with the
addition of induced surface oxygen vacancy defects, both EM and chemical enhancement pathways can be utilized on
cheap reusable surfaces. Two metal-oxide semiconductor thin films, WO3 and TiO2, were used as a platform for
investigating size dependent effects of Au nanoparticles (NPs) for SERS (surface enhanced Raman spectroscopy) and
PIERS (photo-induced enhanced Raman spectroscopy – UV pre-irradiation for additional chemical enhancement)
detection applications. A set concentration of spherical Au NPs (5, 50, 100 and 150 nm in diameter) was drop-cast on preirradiated metal-oxide substrates. Using 4-mercaptobenzoic acid (MBA) as a Raman reporter molecule, a significant
dependence on the size of nanoparticle was found. The greatest surface coverage and ideal distribution of AuNPs was
found for the 50 nm particles during SERS tests, resulting in a high probability of finding an ideal hot-spot region.
However, more significantly a strong dependence on nanoparticle size was also found for PIERS measurements –
completely independent of AuNP distribution and orientation affects – where 50 nm particles were also found to generate
the largest PIERS enhancement. The position of the analyte molecule with respect to the metal-semiconductor interface
and position of generated oxygen vacancies within the hot-spot regions was presented as an explanation for this result
Long-term follow-up of beryllium sensitized workers from a single employer
<p>Abstract</p> <p>Background</p> <p>Up to 12% of beryllium-exposed American workers would test positive on beryllium lymphocyte proliferation test (BeLPT) screening, but the implications of sensitization remain uncertain.</p> <p>Methods</p> <p>Seventy two current and former employees of a beryllium manufacturer, including 22 with pathologic changes of chronic beryllium disease (CBD), and 50 without, with a confirmed positive test were followed-up for 7.4 +/-3.1 years.</p> <p>Results</p> <p>Beyond predicted effects of aging, flow rates and lung volumes changed little from baseline, while D<sub>L</sub>CO dropped 17.4% of predicted on average. Despite this group decline, only 8 subjects (11.1%) demonstrated physiologic or radiologic abnormalities typical of CBD. Other than baseline status, no clinical or laboratory feature distinguished those who clinically manifested CBD at follow-up from those who did not.</p> <p>Conclusions</p> <p>The clinical outlook remains favorable for beryllium-sensitized individuals over the first 5-12 years. However, declines in D<sub>L</sub>CO may presage further and more serious clinical manifestations in the future. These conclusions are tempered by the possibility of selection bias and other study limitations.</p
Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδC can be reversed by inhibition of late Na+ current
Transgenic (TG) Ca2+/calmodulin-dependent protein kinase II (CaMKII) δC mice develop systolic heart failure (HF). CaMKII regulates intracellular Ca2+ handling proteins as well as sarcolemmal Na+ channels. We hypothesized that CaMKII also contributes to diastolic dysfunction and arrhythmias via augmentation of the late Na+ current (late INa) in early HF (8-week-old TG mice). Echocardiography revealed severe diastolic dysfunction in addition to decreased systolic ejection fraction. Premature arrhythmogenic contractions (PACs) in isolated isometrically twitching papillary muscles only occurred in TG preparations (5 vs. 0, P < 0.05) which could be completely terminated when treated with the late INa inhibitor ranolazine (Ran, 5 μmol/L). Force–frequency relationships revealed significantly reduced twitch force amplitudes in TG papillary muscles. Most importantly, diastolic tension increased with raising frequencies to a greater extent in TG papillary muscles compared to WT specimen (at 10 Hz: 3.7 ± 0.4 vs. 2.5 ± 0.3 mN/mm2; P < 0.05). Addition of Ran improved diastolic dysfunction to 2.1 ± 0.2 mN/mm2 (at 10 Hz; P < 0.05) without negative inotropic effects. Mechanistically, the late INa was markedly elevated in myocytes isolated from TG mice and could be completely reversed by Ran. In conclusion, our results show for the first time that TG CaMKIIδC overexpression induces diastolic dysfunction and arrhythmogenic triggers possibly via an enhanced late INa. Inhibition of elevated late INa had beneficial effects on arrhythmias as well as diastolic function in papillary muscles from CaMKIIδC TG mice. Thus, late INa inhibition appears to be a promising option for diastolic dysfunction and arrhythmias in HF where CaMKII is found to be increased
Towards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism
Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at −0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units
Graphene plasmonics
Two rich and vibrant fields of investigation, graphene physics and
plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons
that are tunable and adjustable, but a combination of graphene with noble-metal
nanostructures promises a variety of exciting applications for conventional
plasmonics. The versatility of graphene means that graphene-based plasmonics
may enable the manufacture of novel optical devices working in different
frequency ranges, from terahertz to the visible, with extremely high speed, low
driving voltage, low power consumption and compact sizes. Here we review the
field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version
available only at publisher's web site
The ventro-medial prefrontal cortex: a major link between the autonomic nervous system, regulation of emotion, and stress reactivity?
Recent progress in neuroscience revealed diverse regions of the CNS which moderate autonomic and affective responses. The ventro-medial prefrontal cortex (vmPFC) plays a key role in these regulations. There is evidence that vmPFC activity is associated with cardiovascular changes during a motor task that are mediated by parasympathetic activity. Moreover, vmPFC activity makes important contributions to regulations of affective and stressful situations
Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model
Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children
The developmental impact of prenatal stress, prenatal dexamethasone and postnatal social stress on physiology, behaviour and neuroanatomy of primate offspring: studies in rhesus macaque and common marmoset
RATIONALE: Exposure of the immature mammalian brain to stress factors, including stress levels of glucocorticoids, either prenatally or postnatally, is regarded as a major regulatory factor in short- and long-term brain function and, in human, as a major aetiological factor in neuropsychiatric disorders. Experimental human studies are not feasible and animal studies are required to demonstrate causality and elucidate mechanisms. A number of studies have been conducted and reviewed in rodents but there are relatively few studies in primates. OBJECTIVES: Here we present an overview of our published studies and some original data on the effects of: (1) prenatal stress on hypothalamic-pituitary-adrenal (HPA) re/activity and hippocampus neuroanatomy in juvenile-adolescent rhesus macaques; (2) prenatal dexamethasone (DEX) on HPA activity, behaviour and prefrontal cortex neuroanatomy in infant-adolescent common marmosets; (3) postnatal daily parental separation stress on HPA re/activity, behaviour, sleep and hippocampus and prefrontal cortex neuroanatomy in infant-adolescent common marmoset. RESULTS: Prenatal stress increased basal cortisol levels and reduced neurogenesis in macaque. Prenatal DEX was without effect on HPA activity and reduced social play and skilled motor behaviour in marmoset. Postnatal social stress increased basal cortisol levels, reduced social play, increased awakening and reduced hippocampal glucocorticoid and mineralocorticoid receptor expression in marmoset. CONCLUSIONS: Perinatal stress-related environmental events exert short- and long-term effects on HPA function, behaviour and brain status in rhesus macaque and common marmoset. The mechanisms mediating the enduring effects remain to be elucidated, with candidates including increased basal HPA function and epigenetic programming
- …