2,026 research outputs found
Explicit BCJ Numerators from Pure Spinors
We derive local kinematic numerators for gauge theory tree amplitudes which
manifestly satisfy Jacobi identities analogous to color factors. They naturally
emerge from the low energy limit of superstring amplitudes computed with the
pure spinor formalism. The manifestation of the color--kinematics duality is a
consequence of the superstring computation involving no more than (n-2)!
kinematic factors for the full color dressed n-point amplitude. The bosonic
part of these results describe gluon scattering independent on the number of
supersymmetries and captures any N^kMHV helicity configuration after
dimensional reduction to D=4 dimensions.Comment: 32 pages, harvma
Towards Field Theory Amplitudes From the Cohomology of Pure Spinor Superspace
A simple BRST-closed expression for the color-ordered super-Yang-Mills
5-point amplitude at tree-level is proposed in pure spinor superspace and shown
to be BRST-equivalent to the field theory limit of the open superstring 5-pt
amplitude. It is manifestly cyclic invariant and each one of its five terms can
be associated to the five Feynman diagrams which use only cubic vertices. Its
form also suggests an empirical method to find superspace expressions in the
cohomology of the pure spinor BRST operator for higher-point amplitudes based
on their kinematic pole structure. Using this method, Ansaetze for the 6- and
7-point 10D super-Yang-Mills amplitudes which map to their 14 and 42
color-ordered diagrams are conjectured and their 6- and 7-gluon expansions are
explicitly computed.Comment: 14 pages, harvmac, v4: trivial edits in the text to comply with JHEP
refere
One-loop SYM-supergravity relation for five-point amplitudes
We derive a linear relation between the one-loop five-point amplitude of N=8
supergravity and the one-loop five-point subleading-color amplitudes of N=4
supersymmetric Yang-Mills theory.Comment: 17 pages, 2 figures; v2: very minor correction
Dual Identities inside the Gluon and the Graviton Scattering Amplitudes
Recently, Bern, Carrasco and Johansson conjectured dual identities inside the
gluon tree scattering amplitudes. In this paper, we use the properties of the
heterotic string and open string tree scattering amplitudes to refine and
derive these dual identities. These identities can be carried over to loop
amplitudes using the unitarity method. Furthermore, given the -gluon (as
well as gluon-gluino) tree amplitudes, -graviton (as well as
graviton-gravitino) tree scattering amplitudes can be written down immediately,
avoiding the derivation of Feynman rules and the evaluation of Feynman diagrams
for graviton scattering amplitudes.Comment: 43 pages, 3 figures; typos corrected, a few points clarified
Species replacement dominates megabenthos beta diversity in a remote seamount setting
Seamounts are proposed to be hotspots of deep-sea biodiversity, a pattern potentially arising from increased productivity in a heterogeneous landscape leading to either high species co-existence or species turnover (beta diversity). However, studies on individual seamounts remain rare, hindering our understanding of the underlying causes of local changes in beta diversity. Here, we investigated processes behind beta diversity using ROV video, coupled with oceanographic and quantitative terrain parameters, over a depth gradient in Annan Seamount, Equatorial Atlantic. By applying recently developed beta diversity analyses, we identified ecologically unique sites and distinguished between two beta diversity processes: species replacement and changes in species richness. The total beta diversity was high with an index of 0.92 out of 1 and was dominated by species replacement (68%). Species replacement was affected by depth-related variables, including temperature and water mass in addition to the aspect and local elevation of the seabed. In contrast, changes in species richness component were affected only by the water mass. Water mass, along with substrate also affected differences in species abundance. This study identified, for the first time on seamount megabenthos, the different beta diversity components and drivers, which can contribute towards understanding and protecting regional deep-sea biodiversity
Exoplanets and SETI
The discovery of exoplanets has both focused and expanded the search for
extraterrestrial intelligence. The consideration of Earth as an exoplanet, the
knowledge of the orbital parameters of individual exoplanets, and our new
understanding of the prevalence of exoplanets throughout the galaxy have all
altered the search strategies of communication SETI efforts, by inspiring new
"Schelling points" (i.e. optimal search strategies for beacons). Future efforts
to characterize individual planets photometrically and spectroscopically, with
imaging and via transit, will also allow for searches for a variety of
technosignatures on their surfaces, in their atmospheres, and in orbit around
them. In the near-term, searches for new planetary systems might even turn up
free-floating megastructures.Comment: 9 page invited review. v2 adds some references and v3 has other minor
additions and modification
The "Solar Model Problem" Solved by the Abundance of Neon in Stars of the Local Cosmos
The interior structure of the Sun can be studied with great accuracy using
observations of its oscillations, similar to seismology of the Earth. Precise
agreement between helioseismological measurements and predictions of
theoretical solar models has been a triumph of modern astrophysics (Bahcall et
al. 2005). However, a recent downward revision by 25-35% of the solar
abundances of light elements such as C, N, O and Ne (Asplund et al. 2004) has
broken this accordance: models adopting the new abundances incorrectly predict
the depth of the convection zone, the depth profiles of sound speed and
density, and the helium abundance (Basu Antia 2004, Bahcall et al. 2005). The
discrepancies are far beyond the uncertainties in either the data or the model
predictions (Bahcall et al. 2005b). Here we report on neon abundances relative
to oxygen measured in a sample of nearby solar-like stars from their X-ray
spectra. They are all very similar and substantially larger than the recently
revised solar value. The neon abundance in the Sun is quite poorly determined.
If the Ne/O abundance in these stars is adopted for the Sun the models are
brought back into agreement with helioseismology measurements (Antia Basu 2005,
Bahcall et al. 2005c).Comment: 13 pages, 3 Figure
How often should we monitor for reliable detection of atrial fibrillation recurrence? Efficiency considerations and implications for study design
OBJECTIVE: Although atrial fibrillation (AF) recurrence is unpredictable in terms of onset and duration, current intermittent rhythm monitoring (IRM) diagnostic modalities are short-termed and discontinuous. The aim of the present study was to investigate the necessary IRM frequency required to reliably detect recurrence of various AF recurrence patterns. METHODS: The rhythm histories of 647 patients (mean AF burden: 12±22% of monitored time; 687 patient-years) with implantable continuous monitoring devices were reconstructed and analyzed. With the use of computationally intensive simulation, we evaluated the necessary IRM frequency to reliably detect AF recurrence of various AF phenotypes using IRM of various durations. RESULTS: The IRM frequency required for reliable AF detection depends on the amount and temporal aggregation of the AF recurrence (p<0.0001) as well as the duration of the IRM (p<0.001). Reliable detection (>95% sensitivity) of AF recurrence required higher IRM frequencies (>12 24-hour; >6 7-day; >4 14-day; >3 30-day IRM per year; p<0.0001) than currently recommended. Lower IRM frequencies will under-detect AF recurrence and introduce significant bias in the evaluation of therapeutic interventions. More frequent but of shorter duration, IRMs (24-hour) are significantly more time effective (sensitivity per monitored time) than a fewer number of longer IRM durations (p<0.0001). CONCLUSIONS: Reliable AF recurrence detection requires higher IRM frequencies than currently recommended. Current IRM frequency recommendations will fail to diagnose a significant proportion of patients. Shorter duration but more frequent IRM strategies are significantly more efficient than longer IRM durations. CLINICAL TRIAL REGISTRATION URL: Unique identifier: NCT00806689
Monodromy--like Relations for Finite Loop Amplitudes
We investigate the existence of relations for finite one-loop amplitudes in
Yang-Mills theory. Using a diagrammatic formalism and a remarkable connection
between tree and loop level, we deduce sequences of amplitude relations for any
number of external legs.Comment: 24 pages, 6 figures, v2 typos corrected, reference adde
- …
