23 research outputs found

    Independent S-Locus Mutations Caused Self-Fertility in Arabidopsis thaliana

    Get PDF
    A common yet poorly understood evolutionary transition among flowering plants is a switch from outbreeding to an inbreeding mode of mating. The model plant Arabidopsis thaliana evolved to an inbreeding state through the loss of self-incompatibility, a pollen-rejection system in which pollen recognition by the stigma is determined by tightly linked and co-evolving alleles of the S-locus receptor kinase (SRK) and its S-locus cysteine-rich ligand (SCR). Transformation of A. thaliana, with a functional AlSRKb-SCRb gene pair from its outcrossing relative A. lyrata, demonstrated that A. thaliana accessions harbor different sets of cryptic self-fertility–promoting mutations, not only in S-locus genes, but also in other loci required for self-incompatibility. However, it is still not known how many times and in what manner the switch to self-fertility occurred in the A. thaliana lineage. Here, we report on our identification of four accessions that are reverted to full self-incompatibility by transformation with AlSRKb-SCRb, bringing to five the number of accessions in which self-fertility is due to, and was likely caused by, S-locus inactivation. Analysis of S-haplotype organization reveals that inter-haplotypic recombination events, rearrangements, and deletions have restructured the S locus and its genes in these accessions. We also perform a Quantitative Trait Loci (QTL) analysis to identify modifier loci associated with self-fertility in the Col-0 reference accession, which cannot be reverted to full self-incompatibility. Our results indicate that the transition to inbreeding occurred by at least two, and possibly more, independent S-locus mutations, and identify a novel unstable modifier locus that contributes to self-fertility in Col-0

    An everlasting pioneer: the story of Antirrhinum research

    Get PDF
    Despite the tremendous success of Arabidopsis thaliana, no single model can represent the vast range of form that is seen in the ~250,000 existing species of flowering plants (angiosperms). Here, we consider the history and future of an alternative angiosperm model — the snapdragon Antirrhinum majus. We ask what made Antirrhinum attractive to the earliest students of variation and inheritance, and how its use led to landmark advances in plant genetics and to our present understanding of plant development. Finally, we show how the wide diversity of Antirrhinum species, combined with classical and molecular genetics — the two traditional strengths of Antirrhinum — provide an opportunity for developmental, evolutionary and ecological approaches. These factors make A. majus an ideal comparative angiosperm

    Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura (Canary Islands)

    No full text
    The use of genetic algorithms in geophysical inverse problems is a relatively recent development and offers many advantages in dealing with the non-linearity inherent in such applications. We have implemented a genetic algorithm to efficiently invert a set of gravity data. Employing several fixed density contrasts, this algorithm determines the geometry of the sources of the anomaly gravity field in a 3-D context. The genetic algorithms, based on Darwin's theory of evolution, seek the optimum solution from an initial population of models, working with a set of parameters by means of modi. cations in successive iterations or generations. This searching method traditionally consists of three operators ( selection, crossover and mutation) acting on each generation, but we have added a further one, which smoothes the obtained models. In this way, we have designed an efficient inversion gravity method, confirmed by both a synthetic example and a real data set from the island of Fuerteventura. In the latter case, we identify crustal structures related to the origin and evolution of the island. The results show a clear correlation between the sources of gravity field in the model and the three volcanic complexes recognized in Fuerteventura by other geological studies
    corecore