14 research outputs found

    Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    Get PDF
    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently.The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3.PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical β-barrel core, an insertion motif between the second and third β-strands and a C-terminal α-helix bundle. Both the canonical β-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1

    Radially Branched Deployment for More Efficient Cell Transplantation at the Scale of the Human Brain

    No full text
    BACKGROUND: In preclinical studies, cell transplantation into the brain has shown great promise for the treatment of a wide range of neurological diseases. However, the use of a straight cannula and syringe for cell delivery to the human brain does not approximate cell distribution achieved in animal studies. This technical deficiency may limit the successful clinical translation of cell transplantation. OBJECTIVE: To develop a stereotactic neurosurgical device that effectively distributes viable cells to the human brain. Our primary aims were to (1) minimize the number of transcortical penetrations required for transplantation, (2) reduce variability in cell dosing, and (3) increase cell survival. METHODS: We developed a modular cannula system capable of radially branched deployment (RBD) of a cell delivery catheter at variable angles from the longitudinal device axis. We also developed an integrated catheter-plunger system, eliminating the need for a separate syringe delivery mechanism. The RBD prototype was evaluated in vitro and in vivo with subcortical injections into the swine brain. Performance was compared to a 20G straight cannula with dual side ports, a device used in current clinical trials. RESULTS: RBD enabled therapeutic delivery in a precise “tree-like” pattern branched from a single initial trajectory, thereby facilitating delivery to a volumetrically large target region. RBD could transplant materials in a radial pattern up to 2.0 cm from the initial penetration tract. The novel integrated catheter-plunger system facilitated manual delivery of small and precise volumes of injection (1.36 ± 0.13 µl per cm of plunger travel). Both dilute and highly concentrated neural precursor cell populations tolerated transit through the device with high viability and unaffected developmental potential. While reflux of infusate along the penetration tract was problematic with use of the 20G cannula, RBD was resistant to this source of cell dose variability in agarose. RBD enabled radial injections to the brain of swine when used with a modern clinical stereotactic system. CONCLUSIONS: By increasing the total delivery volume through a single transcortical penetration in agarose models, RBD strategy may provide a new approach for cell transplantation to the human brain. Incorporation of RBD or selected aspects of its design into future clinical trials may increase the likelihood of successful translation of cell-based therapy to the human patient

    Activity-dependent signaling mechanisms regulating adult hippocampal neural stem cells and their progeny

    No full text
    Adult neural stem cells (NSCs) reside in a restricted microenvironment, where their development is controlled by subtle and presently underexplored cues. This raises a significant question: what instructions must be provided by this supporting niche to regulate NSC development and functions? Signaling from the niche is proposed to control many aspects of NSC behavior, including balancing the quiescence and proliferation of NSCs, determining the cell division mode (symmetric versus asymmetric), and preventing premature depletion of stem cells to maintain neurogenesis throughout life. Interactions between neurogenic niches and NSCs also govern the homeostatic regulation of adult neurogenesis under diverse physiological, environmental, and pathological conditions. An important implication from revisiting many previously-identifi ed regulatory factors is that most of them (e.g., the antidepressant fluoxetine and exercise) affect gross neurogenesis by acting downstream of NSCs at the level of intermediate progenitors and neuroblasts, while leaving the NSC pool unaffected. Therefore, it is critically important to address how various niche components, signaling pathways, and environmental stimuli differentially regulate distinct stages of adult neurogenesis
    corecore