7 research outputs found

    Evolution of a Functional Head Joint in Deep-Sea Fishes (Stomiidae)

    No full text
    The head and anterior trunk region of most actinopterygian fishes is stiffened as, uniquely within vertebrates, the pectoral girdles have a direct and often strong connection through the posttemporal to the posterior region of the skull. Members of the mesopelagic fish family Stomiidae have their pectoral girdle separated from the skull. This connection is lost in several teleost groups, but the stomiids have an additional evolutionary novelty-a flexible connection between the occiput and the first vertebra, where only the notochord persists. Several studies suggested that stomiids engulf significantly large prey items and conjectured about the functional role of the anterior part of the vertebral column; however, there has been no precise anatomical description of this complex. Here we describe a unique configuration comprising the occiput and the notochordal sheath in Aristostomias, Eustomias, Malacosteus, Pachystomias, and Photostomias that represents a true functional head joint in teleosts and discuss its potential phylogenetic implications. In these genera, the chordal sheath is folded inward ventrally beneath its connection to the basioccipital and embraces the occipital condyle when in a resting position. In the resting position (wherein the head is not manipulatively elevated), this condyle is completely embraced by the ventral fold of the notochord. A manual manipulative elevation of the head in cleared and stained specimens unfolds the ventral sheath of the notochord. As a consequence, the cranium can be pulled up and back significantly farther than in all other teleost taxa that lack such a functional head joint and thereby can reach mouth gapes up to 120°

    Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species

    No full text
    Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.)

    Fin modules: an evolutionary perspective on appendage disparity in basal vertebrates

    Full text link
    Abstract Background Fishes are extremely speciose and also highly disparate in their fin configurations, more specifically in the number of fins present as well as their structure, shape, and size. How they achieved this remarkable disparity is difficult to explain in the absence of any comprehensive overview of the evolutionary history of fish appendages. Fin modularity could provide an explanation for both the observed disparity in fin configurations and the sequential appearance of new fins. Modularity is considered as an important prerequisite for the evolvability of living systems, enabling individual modules to be optimized without interfering with others. Similarities in developmental patterns between some of the fins already suggest that they form developmental modules during ontogeny. At a macroevolutionary scale, these developmental modules could act as evolutionary units of change and contribute to the disparity in fin configurations. This study addresses fin disparity in a phylogenetic perspective, while focusing on the presence/absence and number of each of the median and paired fins. Results Patterns of fin morphological disparity were assessed by mapping fin characters on a new phylogenetic supertree of fish orders. Among agnathans, disparity in fin configurations results from the sequential appearance of novel fins forming various combinations. Both median and paired fins would have appeared first as elongated ribbon-like structures, which were the precursors for more constricted appendages. Among chondrichthyans, disparity in fin configurations relates mostly to median fin losses. Among actinopterygians, fin disparity involves fin losses, the addition of novel fins (e.g., the adipose fin), and coordinated duplications of the dorsal and anal fins. Furthermore, some pairs of fins, notably the dorsal/anal and pectoral/pelvic fins, show non-independence in their character distribution, supporting expectations based on developmental and morphological evidence that these fin pairs form evolutionary modules. Conclusions Our results suggest that the pectoral/pelvic fins and the dorsal/anal fins form two distinct evolutionary modules, and that the latter is nested within a more inclusive median fins module. Because the modularity hypotheses that we are testing are also supported by developmental and variational data, this constitutes a striking example linking developmental, variational, and evolutionary modules.https://deepblue.lib.umich.edu/bitstream/2027.42/136630/1/12915_2017_Article_370.pd
    corecore