11 research outputs found

    Climate Change and Risk of Leishmaniasis in North America: Predictions from Ecological Niche Models of Vector and Reservoir Species

    Get PDF
    Camila González is with National Autonomous University of Mexico, Ophelia Wang is with UT Austin, Stavana E. Strutz is with UT Austin, Constantino González-Salazar is with National Autonomous University of Mexico, Víctor Sánchez-Cordero is with National Autonomous University of Mexico, Sahotra Sarkar is with UT Austin.Background -- Climate change is increasingly being implicated in species' range shifts throughout the world, including those of important vector and reservoir species for infectious diseases. In North America (México, United States, and Canada), leishmaniasis is a vector-borne disease that is autochthonous in México and Texas and has begun to expand its range northward. Further expansion to the north may be facilitated by climate change as more habitat becomes suitable for vector and reservoir species for leishmaniasis. Methods and Findings -- The analysis began with the construction of ecological niche models using a maximum entropy algorithm for the distribution of two sand fly vector species (Lutzomyia anthophora and L. diabolica), three confirmed rodent reservoir species (Neotoma albigula, N. floridana, and N. micropus), and one potential rodent reservoir species (N. mexicana) for leishmaniasis in northern México and the United States. As input, these models used species' occurrence records with topographic and climatic parameters as explanatory variables. Models were tested for their ability to predict correctly both a specified fraction of occurrence points set aside for this purpose and occurrence points from an independently derived data set. These models were refined to obtain predicted species' geographical distributions under increasingly strict assumptions about the ability of a species to disperse to suitable habitat and to persist in it, as modulated by its ecological suitability. Models successful at predictions were fitted to the extreme A2 and relatively conservative B2 projected climate scenarios for 2020, 2050, and 2080 using publicly available interpolated climate data from the Third Intergovernmental Panel on Climate Change Assessment Report. Further analyses included estimation of the projected human population that could potentially be exposed to leishmaniasis in 2020, 2050, and 2080 under the A2 and B2 scenarios. All confirmed vector and reservoir species will see an expansion of their potential range towards the north. Thus, leishmaniasis has the potential to expand northwards from México and the southern United States. In the eastern United States its spread is predicted to be limited by the range of L. diabolica; further west, L. anthophora may play the same role. In the east it may even reach the southern boundary of Canada. The risk of spread is greater for the A2 scenario than for the B2 scenario. Even in the latter case, with restrictive (contiguous) models for dispersal of vector and reservoir species, and limiting vector and reservoir species occupancy to only the top 10% of their potential suitable habitat, the expected number of human individuals exposed to leishmaniasis by 2080 will at least double its present value. Conclusions -- These models predict that climate change will exacerbate the ecological risk of human exposure to leishmaniasis in areas outside its present range in the United States and, possibly, in parts of southern Canada. This prediction suggests the adoption of measures such as surveillance for leishmaniasis north of Texas as disease cases spread northwards. Potential vector and reservoir control strategies—besides direct intervention in disease cases—should also be further investigated.This study was partially supported by the Universidad Nacional Autonoma de Mexico (Project PAPIIT IN 225408). CG was a recipient of the Dirección General de Estudios de Posgrado fellowship for the Posgrado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    Disruption of the plant gene MOM releases transcriptional silencing of methylated genes

    No full text
    Epigenetic modifications change transcription patterns in multicellular organisms to achieve tissue-specific gene expression and inactivate alien DNA such as transposons or transgenes. In plants and animals, DNA methylation is involved in heritability and flexibility of epigenetic states, although its function is far from clear. We have isolated an Arabidopsis gene, MOM, whose product is required for the maintenance of transcriptional gene silencing. Mutation of this gene or depletion of its transcript by expression of antisense RNA reactivates transcription from several previously silent, heavily methylated loci. Despite this, the dense methylation at these reactivated loci is maintained even after nine generations, indicating that transcriptional activity and methylation pattern are inherited independently. The predicted MOM gene product is a nuclear protein of 2,001 amino acids containing a region similar to part of the ATPase region of the SWI2/SNF2 family, members of which are involved in chromatin remodelling. MOM is the first known molecular component that is essential for transcriptional gene silencing and does not affect methylation pattern. Thus, it may act downstream of methylation in epigenetic regulation, or be part of a new pathway that does not require methylation marks

    Molecular genetics of cellular differentiation in leaves

    No full text
    Leaves of green plants vary widely in morphology. However, the underlying cell types and structures observed in leaves of different species are remarkably similar. Although we can adequately describe leaf development in morphological terms we cannot yet explain interactions at the cellular level. In recent years molecular genetics has been used extensively to address a variety of developmental questions. The isolation of a wide variety of mutants disrupted in numerous aspects of leaf ontogeny has led to the cloning of genes involved in various developmental processes. In this review we consider advances that have been made in understanding shoot apical meristem organization, leaf initiation and the development of leaf form. In particular we concentrate on progress that has been made in understanding cellular differentiation in the epidermis, and within the interior of the leaf, namely the photosynthetic cells and the vasculature

    In Vitro Production of Haploids and Their Use in Cell Genetics and Plant Breeding

    No full text
    corecore