2 research outputs found

    Proteome-wide Mendelian randomization identifies causal links between blood proteins and severe COVID-19.

    Get PDF
    Funder: Cambridge NIHR Biomedical Research CentreFunder: Addenbrooke’s Charities TrustFunder: NIHR Biomedical Research Centre (BRC)Funder: Maudsley NHS Foundation TrustFunder: King’s College LondonIn November 2021, the COVID-19 pandemic death toll surpassed five million individuals. We applied Mendelian randomization including >3,000 blood proteins as exposures to identify potential biomarkers that may indicate risk for hospitalization or need for respiratory support or death due to COVID-19, respectively. After multiple testing correction, using genetic instruments and under the assumptions of Mendelian Randomization, our results were consistent with higher blood levels of five proteins GCNT4, CD207, RAB14, C1GALT1C1, and ABO being causally associated with an increased risk of hospitalization or respiratory support/death due to COVID-19 (ORs = 1.12-1.35). Higher levels of FAAH2 were solely associated with an increased risk of hospitalization (OR = 1.19). On the contrary, higher levels of SELL, SELE, and PECAM-1 decrease risk of hospitalization or need for respiratory support/death (ORs = 0.80-0.91). Higher levels of LCTL, SFTPD, KEL, and ATP2A3 were solely associated with a decreased risk of hospitalization (ORs = 0.86-0.93), whilst higher levels of ICAM-1 were solely associated with a decreased risk of respiratory support/death of COVID-19 (OR = 0.84). Our findings implicate blood group markers and binding proteins in both hospitalization and need for respiratory support/death. They, additionally, suggest that higher levels of endocannabinoid enzymes may increase the risk of hospitalization. Our research replicates findings of blood markers previously associated with COVID-19 and prioritises additional blood markers for risk prediction of severe forms of COVID-19. Furthermore, we pinpoint druggable targets potentially implicated in disease pathology

    Proteome-wide Mendelian randomization identifies causal links between blood proteins and severe COVID-19

    No full text
    The COVID-19 pandemic death toll now surpasses two million individuals and there is a need for early identification of individuals at increased risk of mortality. Host genetic variation partially drives the immune and biochemical responses to COVID-19 that lead to risk of mortality. We identify and prioritise blood proteins and biomarkers that may indicate increased risk for severe COVID-19, via a proteome Mendelian randomization approach by collecting genome-wide association study (GWAS) summary statistics for >4,000 blood proteins. After multiple testing correction, troponin I3, cardiac type (TNNI3) had the strongest effect (odds ratio (O.R.) of 6.86 per standard deviation increase in protein level), with proteinase 3 (PRTN3) (O.R.=2.48), major histocompatibility complex, class II, DQ alpha 2 (HLA-DQA2) (O.R.=2.29), the C4A-C4B heterodimer (O.R.=1.76) and low-density lipoprotein receptor-related protein associated protein 1 (LRPAP1) (O.R.=1.73) also being associated with higher odds of severe COVID-19. Conversely, major histocompatibility complex class I polypeptide-related sequence A (MHC1A) (O.R.=0.6) and natural cytotoxicity triggering receptor 3 (NCR3) (O.R.=0.46) were associated with lower odds. These proteins are involved in heart muscle contraction, natural killer and antigen presenting cells, and the major histocompatibility complex. Based on these findings, it may be possible to better predict which patients may develop severe COVID-19 and to design better treatments targeting the implicated mechanisms
    corecore