6,870 research outputs found

    Going nuclear: gene family evolution and vertebrate phylogeny reconciled

    Get PDF
    Gene duplications have been common throughout vertebrate evolution, introducing paralogy and so complicating phylogenctic inference from nuclear genes. Reconciled trees are one method capable of dealing with paralogy, using the relationship between a gene phylogeny and the phylogeny of the organisms containing those genes to identify gene duplication events. This allows us to infer phylogenies from gene families containing both orthologous and paralogous copies. Vertebrate phylogeny is well understood from morphological and palaeontological data, but studies using mitochondrial sequence data have failed to reproduce this classical view. Reconciled tree analysis of a database of 118 vertebrate gene families supports a largely classical vertebrate phylogeny

    Endoscopic Treatment of a Bile Duct Stone Containing a Surgical Staple

    Get PDF
    We report a case of a pigmented gallstone which formed around a surgical staple in the bile duct. The stone was removed and retrieved endoscopically. A brief review of bile duct foreign bodies and gallstones is presented

    Magnetoelectric birefringence revisited

    Get PDF
    Electromagnetic wave propagation inside isotropic material media characterized by dielectric coefficients εμν(E,B)\varepsilon_{\mu\nu}(E,B) and μμν(E,B)\mu_{\mu\nu}(E,B) is examined. The regime of the eikonal approximation is considered. The Hadamard method of field disturbances is used and the dispersion relations are obtained by solving the Fresnel equation. Some applications of the formalism are presented. Particularly, birefringence phenomena induced by applied external fields are derived and discussed. It is shown that magnetoelectric birefringence effect can occur even without the presence of Kerr and Cotton-Mouton effects, provided the physical system satisfies certain conditions.Comment: 9 pages, 1 figure, LaTe

    Patches in a side-by-side configuration: a description of the flow and deposition fields

    Get PDF
    In the last few decades, a lot of research attention has been paid to flow-vegetation interactions. Starting with the description of the flow field around uniform macrophyte stands, research has evolved more recently to the description of flow fields around individual, distinct patches. However, in the field, vegetation patches almost never occur in isolation. As such, patches will influence each other during their development and interacting, complex flow fields can be expected. In this study, two emergent patches of the same diameter (D = 22 cm) and a solid volume fraction of 10% were placed in a side-by-side configuration in a lab flume. The patches were built as an array of wooden cylinders, and the distance between the patches (gap width Delta) was varied between Delta = 0 and 14 cm. Flow measurements were performed by a 3D Vectrino Velocimeter (Nortek AS) at mid-depth of the flow. Deposition experiments of suspended solids were performed for selected gap widths. Directly behind each patch, the wake evolved in a manner identical to that of a single, isolated patch. On the centerline between the patches, the maximum velocity U-max was found to be independent of the gap width Delta. However, the length over which this maximum velocity persists, the potential core L-j, increased linearly as the gap width increased. After the merging of the wakes, the centerline velocity reaches a minimum value U-min. The minimum centerline velocity decreased in magnitude as the gap width decreased. The velocity pattern within the wake is reflected in the deposition patterns. An erosion zone occurs on the centerline between the patches, where the velocity is elevated. Deposition occurs in the low velocity zones directly behind each patch and also downstream of the patches, along the centerline between the patches at the point of local velocity minimum. This downstream deposition zone, a result of the interaction of neighbouring patch wakes, may facilitate the establishment of new vegetation, which may eventually inhibit flow between the upstream patches and facilitate patch merger

    Magnetic Linear Birefringence Measurements Using Pulsed Fields

    Full text link
    In this paper we present the realization of further steps towards the measurement of the magnetic birefringence of the vacuum using pulsed fields. After describing our experiment, we report the calibration of our apparatus using nitrogen gas and we discuss the precision of our measurement giving a detailed error budget. Our best present vacuum upper limit is Dn < 5.0x10^(-20) T^-2 per 4 ms acquisition time. We finally discuss the improvements necessary to reach our final goal.Comment: submitted to Phys. Rev.

    The Einstein 3-form G_a and its equivalent 1-form L_a in Riemann-Cartan space

    Get PDF
    The definition of the Einstein 3-form G_a is motivated by means of the contracted 2nd Bianchi identity. This definition involves at first the complete curvature 2-form. The 1-form L_a is defined via G_a = L^b \wedge #(o_b \wedge o_a). Here # denotes the Hodge-star, o_a the coframe, and \wedge the exterior product. The L_a is equivalent to the Einstein 3-form and represents a certain contraction of the curvature 2-form. A variational formula of Salgado on quadratic invariants of the L_a 1-form is discussed, generalized, and put into proper perspective.Comment: LaTeX, 13 Pages. To appear in Gen. Rel. Gra

    Geothermal energy in the UK: The life-cycle environmental impacts of electricity production from the United Downs Deep Geothermal Power project

    Get PDF
    The UK is rich in heat-producing granites, especially in the county of Cornwall, suggesting the potential for energy production with low environmental footprint. The United Downs Deep Geothermal Power (UDDGP) project aims to demonstrate the technical and commercial viability to produce electricity from the Cornish geothermal resource, exploiting the natural permeability of a significant deep structural fracture zone known as the Porthtowan Fault Zone. Drilling of the first well started at the end of 2018, and the plant is expected to be operational by mid-2020. A relevant question is whether deep geothermal energy is truly environmentally benign. This article presents a comprehensive and detailed Life Cycle Assessment study that i) identifies the main life-cycle sources of environmental impacts for the production of electricity in the UDDGP plant; ii) investigates the effects on the environmental impacts of significant uncertainties surrounding the project, such as availability of geothermal fluid and configuration of the power plant, and iii) compares the performance of the UDDGP operation, and by extension of the putative geothermal energy production in the UK, with other key energy sources in the country. The life cycle inventory relies on a combination of site-specific data for wells construction and literature data for above-surface facilities and stimulation techniques. We validated our model by comparing climate change impacts of UDDGP with those reported by other studies on enhanced geothermal systems. Our results show that the greatest portion of environmental impacts originates from the construction phase (primarily due to steel for wells casing and diesel used during drilling), whilst the scenario analysis demonstrates that increasing installed capacity and cogenerating heat and power are the most effective strategies for improving the environmental performance. Our analysis also suggests that the environmental impacts may increase by ∼35% if stimulation techniques are required to increase the geothermal wells productivity. Compared to alternative energy sources, in the category climate change, UDDGP performs better than solar energy and is comparable with wind and nuclear. It is shown that the environmental benefits of geothermal energy are not straightforward and that a number of trade-offs needs to be considered when other impact categories are quantified

    Life-cycle Inventory data and impacts on electricity production at the United Downs Deep Geothermal Power project in the UK

    Get PDF
    This data article supports the research article “Geothermal energy in the UK: the life-cycle environmental impacts of electricity production from the United Downs Deep Geothermal Power project”. The article reports inventory data, primarily on the construction of the geothermal wells, that is not reported in the main article, and the complete, disaggregated numerical values of the life-cycle environmental impacts reported only in part and in graphical form in the research article. The article also includes data supporting comparative analyses between deep geothermal energy and other energy technologies in the UK, and between the impacts of the construction of wells in a deep and conventional power plant

    The jet of Markarian 501 from millions of Schwarzschild radii down to a few hundreds

    Full text link
    Aims: The TeV BL Lac object Markarian 501 is a complex, core dominated radio source, with a one sided, twisting jet on parsec scales. In the present work, we attempt to extend our understanding of the source physics to regions of the radio jet which have not been accessed before. Methods: We present new observations of Mrk 501 at 1.4 and 86 GHz. The 1.4 GHz data were obtained using the Very Large Array (VLA) and High Sensitivity Array (HSA) in November 2004, in full polarization, with a final r.m.s. noise of 25 microJy/beam in the HSA total intensity image; the 86 GHz observations were performed in October 2005 with the Global Millimeter VLBI Array (GMVA), providing an angular resolution as good as 110 x 40 microarcseconds. Results: The sensitivity and resolution provided by the HSA make it possible to detect the jet up to ~700 milliarcseconds (corresponding to a projected linear size of ~500 pc) from its base, while the superior resolution of the 86 GHz GMVA observations probes the innermost regions of the jet down to ~200 Schwarzschild radii. The brightness temperature at the jet base is in excess of 6e10 K. We find evidence of limb brightening on physical scales from <1 pc to ~40 pc. Polarization images and fits to the trend of jet width and brightness vs. distance from the core reveal a magnetic field parallel to the jet axis.Comment: 10 pages, accepted by A&
    corecore