3,892 research outputs found

    Counting the learnable functions of structured data

    Get PDF
    Cover's function counting theorem is a milestone in the theory of artificial neural networks. It provides an answer to the fundamental question of determining how many binary assignments (dichotomies) of pp points in nn dimensions can be linearly realized. Regrettably, it has proved hard to extend the same approach to more advanced problems than the classification of points. In particular, an emerging necessity is to find methods to deal with structured data, and specifically with non-pointlike patterns. A prominent case is that of invariant recognition, whereby identification of a stimulus is insensitive to irrelevant transformations on the inputs (such as rotations or changes in perspective in an image). An object is therefore represented by an extended perceptual manifold, consisting of inputs that are classified similarly. Here, we develop a function counting theory for structured data of this kind, by extending Cover's combinatorial technique, and we derive analytical expressions for the average number of dichotomies of generically correlated sets of patterns. As an application, we obtain a closed formula for the capacity of a binary classifier trained to distinguish general polytopes of any dimension. These results may help extend our theoretical understanding of generalization, feature extraction, and invariant object recognition by neural networks

    Soft bounds on diffusion produce skewed distributions and Gompertz growth

    Get PDF
    Constraints can affect dramatically the behavior of diffusion processes. Recently, we analyzed a natural and a technological system and reported that they perform diffusion-like discrete steps displaying a peculiar constraint, whereby the increments of the diffusing variable are subject to configuration-dependent bounds. This work explores theoretically some of the revealing landmarks of such phenomenology, termed "soft bound". At long times, the system reaches a steady state irreversibly (i.e., violating detailed balance), characterized by a skewed "shoulder" in the density distribution, and by a net local probability flux, which has entropic origin. The largest point in the support of the distribution follows a saturating dynamics, expressed by the Gompertz law, in line with empirical observations. Finally, we propose a generic allometric scaling for the origin of soft bounds. These findings shed light on the impact on a system of such "scaling" constraint and on its possible generating mechanisms.Comment: 9 pages, 6 color figure

    Growth-rate-dependent dynamics of a bacterial genetic oscillator

    Get PDF
    Gene networks exhibiting oscillatory dynamics are widespread in biology. The minimal regulatory designs giving rise to oscillations have been implemented synthetically and studied by mathematical modeling. However, most of the available analyses generally neglect the coupling of regulatory circuits with the cellular "chassis" in which the circuits are embedded. For example, the intracellular macromolecular composition of fast-growing bacteria changes with growth rate. As a consequence, important parameters of gene expression, such as ribosome concentration or cell volume, are growth-rate dependent, ultimately coupling the dynamics of genetic circuits with cell physiology. This work addresses the effects of growth rate on the dynamics of a paradigmatic example of genetic oscillator, the repressilator. Making use of empirical growth-rate dependences of parameters in bacteria, we show that the repressilator dynamics can switch between oscillations and convergence to a fixed point depending on the cellular state of growth, and thus on the nutrients it is fed. The physical support of the circuit (type of plasmid or gene positions on the chromosome) also plays an important role in determining the oscillation stability and the growth-rate dependence of period and amplitude. This analysis has potential application in the field of synthetic biology, and suggests that the coupling between endogenous genetic oscillators and cell physiology can have substantial consequences for their functionality.Comment: 14 pages, 9 figures (revised version, accepted for publication

    Generalization from correlated sets of patterns in the perceptron

    Full text link
    Generalization is a central aspect of learning theory. Here, we propose a framework that explores an auxiliary task-dependent notion of generalization, and attempts to quantitatively answer the following question: given two sets of patterns with a given degree of dissimilarity, how easily will a network be able to "unify" their interpretation? This is quantified by the volume of the configurations of synaptic weights that classify the two sets in a similar manner. To show the applicability of our idea in a concrete setting, we compute this quantity for the perceptron, a simple binary classifier, using the classical statistical physics approach in the replica-symmetric ansatz. In this case, we show how an analytical expression measures the "distance-based capacity", the maximum load of patterns sustainable by the network, at fixed dissimilarity between patterns and fixed allowed number of errors. This curve indicates that generalization is possible at any distance, but with decreasing capacity. We propose that a distance-based definition of generalization may be useful in numerical experiments with real-world neural networks, and to explore computationally sub-dominant sets of synaptic solutions

    Intermittent transport of bacterial chromosomal loci

    Get PDF
    The short-time dynamics of bacterial chromosomal loci is a mixture of subdiffusive and active motion, in the form of rapid relocations with near-ballistic dynamics. While previous work has shown that such rapid motions are ubiquitous, we still have little grasp on their physical nature, and no positive model is available that describes them. Here, we propose a minimal theoretical model for loci movements as a fractional Brownian motion subject to a constant but intermittent driving force, and compare simulations and analytical calculations to data from high-resolution dynamic tracking in E. coli. This analysis yields the characteristic time scales for intermittency. Finally, we discuss the possible shortcomings of this model, and show that an increase in the effective local noise felt by the chromosome associates to the active relocations.Comment: 8 pages, 6 figures; typos added, introduction expanded, conclusions unchange

    Isotropic-Nematic transition of long thin hard spherocylinders confined in a quasi-two-dimensional planar geometry

    Full text link
    We present computer simulations of long thin hard spherocylinders in a narrow planar slit. We observe a transition from the isotropic to a nematic phase with quasi-long-range orientational order upon increasing the density. This phase transition is intrinsically two dimensional and of the Kosterlitz-Thouless type. The effective two-dimensional density at which this transition occurs increases with plate separation. We qualitatively compare some of our results with experiments where microtubules are confined in a thin slit, which gave the original inspiration for this work.Comment: 8 pages, 10 figure

    Dicke simulators with emergent collective quantum computational abilities

    Get PDF
    Using an approach inspired from Spin Glasses, we show that the multimode disordered Dicke model is equivalent to a quantum Hopfield network. We propose variational ground states for the system at zero temperature, which we conjecture to be exact in the thermodynamic limit. These ground states contain the information on the disordered qubit-photon couplings. These results lead to two intriguing physical implications. First, once the qubit-photon couplings can be engineered, it should be possible to build scalable pattern-storing systems whose dynamics is governed by quantum laws. Second, we argue with an example how such Dicke quantum simulators might be used as a solver of "hard" combinatorial optimization problems.Comment: 5+2 pages, 2 figures. revisited in the exposition and supplementary added. Comments are welcom

    Gene silencing and large-scale domain structure of the E. coli genome

    Full text link
    The H-NS chromosome-organizing protein in E. coli can stabilize genomic DNA loops, and form oligomeric structures connected to repression of gene expression. Motivated by the link between chromosome organization, protein binding and gene expression, we analyzed publicly available genomic data sets of various origins, from genome-wide protein binding profiles to evolutionary information, exploring the connections between chromosomal organization, genesilencing, pseudo-gene localization and horizontal gene transfer. We report the existence of transcriptionally silent contiguous areas corresponding to large regions of H-NS protein binding along the genome, their position indicates a possible relationship with the known large-scale features of chromosome organization
    • …
    corecore