4,955 research outputs found
A Random Multifractal Tilling
We develop a multifractal random tilling that fills the square. The
multifractal is formed by an arrangement of rectangular blocks of different
sizes, areas and number of neighbors. The overall feature of the tilling is an
heterogeneous and anisotropic random self-affine object. The multifractal is
constructed by an algorithm that makes successive sections of the square. At
each -step there is a random choice of a parameter related to the
section ratio. For the case of random choice between and we
find analytically the full spectrum of fractal dimensions
Anisotropy and percolation threshold in a multifractal support
Recently a multifractal object, , was proposed to study percolation
properties in a multifractal support. The area and the number of neighbors of
the blocks of show a non-trivial behavior. The value of the
probability of occupation at the percolation threshold, , is a function
of , a parameter of which is related to its anisotropy. We
investigate the relation between and the average number of neighbors of
the blocks as well as the anisotropy of
From continuous improvement to collaborative innovation : the next challenge in supply chain management
This paper considers the growing importance of inter-company collaboration, and develops the concept of intra-company continuous improvement through to what may be termed collaborative innovation between members of an extended manufacturing enterprise (EME). The importance of ICTs to such company networks is considered but research has shown that no amount of technology can overcome a lack of trust and ineffective goal setting between key partners involved in the cross-company projects. Different governance models may also impact on the success or otherwise of the network. This paper provides an overview of the main topics considered in this Special Issu
A note on upper ramification jumps in Abelian extensions of exponent p
In this paper we present a classification of the possible upper ramification jumps for an elementary Abelian p-extension of ap-adic field. The fundamental step for the proof of the main result is the computation of the ramification filtration for the maximal elementary Abelian p-extension of the base field K. This result generalizes [3, Lemma 9, p. 2861, where the same result is proved under the assumption that K contains a primitive p-th root of unity. To deal with this general case we use class field theory and the explicit relations between the normic group of an extension and its ramification jumps, and we obtain necessary and sufficient conditions for the upper ramification jumps of an elementary Abelian p-extension of K
- …