5,371 research outputs found

    Magnetic field induced lattice anomaly inside the superconducting state of CeCoIn5_5: evidence of the proposed Fulde-Ferrell-Larkin-Ovchinnikov state

    Full text link
    We report high magnetic field linear magnetostriction experiments on CeCoIn5_5 single crystals. Two features are remarkable: (i) a sharp discontinuity in all the crystallographic axes associated with the upper superconducting critical field Bc2B_{c2} that becomes less pronounced as the temperature increases; (ii) a distinctive second order-like feature observed only along the c-axis in the high field (10 T BBc2 \lesssim B \leq B_{c2}) low temperature (TT \lesssim 0.35 K) region. This second order transition is observed only when the magnetic field lies within 20o^o of the ab-planes and there is no signature of it above Bc2B_{c2}, which raises questions regarding its interpretation as a field induced magnetically ordered phase. Good agreement with previous results suggests that this anomaly is related to the transition to the Fulde-Ferrel-Larkin-Ovchinnikov superconducting state.Comment: 3 figures, 5 page

    Enhanced Safety Surveillance of Influenza Vaccines in General Practice, Winter 2015-16: Feasibility Study

    Get PDF
    BACKGROUND: The European Medicines Agency (EMA) requires vaccine manufacturers to conduct enhanced real-time surveillance of seasonal influenza vaccination. The EMA has specified a list of adverse events of interest to be monitored. The EMA sets out 3 different ways to conduct such surveillance: (1) active surveillance, (2) enhanced passive surveillance, or (3) electronic health record data mining (EHR-DM). English general practice (GP) is a suitable setting to implement enhanced passive surveillance and EHR-DM. OBJECTIVE: This study aimed to test the feasibility of conducting enhanced passive surveillance in GP using the yellow card scheme (adverse events of interest reporting cards) to determine if it has any advantages over EHR-DM alone. METHODS: A total of 9 GPs in England participated, of which 3 tested the feasibility of enhanced passive surveillance and the other 6 EHR-DM alone. The 3 that tested EPS provided patients with yellow (adverse events) cards for patients to report any adverse events. Data were extracted from all 9 GPs' EHRs between weeks 35 and 49 (08/24/2015 to 12/06/2015), the main period of influenza vaccination. We conducted weekly analysis and end-of-study analyses. RESULTS: Our GPs were largely distributed across England with a registered population of 81,040. In the week 49 report, 15,863/81,040 people (19.57% of the registered practice population) were vaccinated. In the EPS practices, staff managed to hand out the cards to 61.25% (4150/6776) of the vaccinees, and of these cards, 1.98% (82/4150) were returned to the GP offices. Adverse events of interests were reported by 113 /7223 people (1.56%) in the enhanced passive surveillance practices, compared with 322/8640 people (3.73%) in the EHR-DM practices. CONCLUSIONS: Overall, we demonstrated that GPs EHR-DM was an appropriate method of enhanced surveillance. However, the use of yellow cards, in enhanced passive surveillance practices, did not enhance the collection of adverse events of interests as demonstrated in this study. Their return rate was poor, data entry from them was not straightforward, and there were issues with data reconciliation. We concluded that customized cards prespecifying the EMA's adverse events of interests, combined with EHR-DM, were needed to maximize data collection. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1136/bmjopen-2016-015469
    corecore