5,115 research outputs found
The Reaction-Diffusion Front for in One Dimension
We study theoretically and numerically the steady state diffusion controlled
reaction , where currents of and particles
are applied at opposite boundaries. For a reaction rate , and equal
diffusion constants , we find that when the
reaction front is well described by mean field theory. However, for , the front acquires a Gaussian profile - a result of
noise induced wandering of the reaction front center. We make a theoretical
prediction for this profile which is in good agreement with simulation.
Finally, we investigate the intrinsic (non-wandering) front width and find
results consistent with scaling and field theoretic predictions.Comment: 11 pages, revtex, 4 separate PostScript figure
Scale-dependent variation in coral community similarity across sites, islands, and island groups
Community similarity is the proportion of species richness in a region that is shared on average among communities within that region. The slope of local richness (α diversity) regressed on regional richness (Îł diversity) can serve as an index of community similarity across regions with different regional richness. We examined community similarity in corals at three spatial scales (among transects at a site, sites on an island, and islands within an island group) across a 10 000-km longitudinal diversity gradient in the west-central Pacific Ocean. When α diversity was regressed on Îł diversity, the slopes, and thus community similarity, increased with scale (0.085, 0.261, and 0.407, respectively) because a greater proportion of Îł diversity was subsumed within α diversity as scale increased. Using standard randomization methods, we also examined how community similarity differed between observed and randomized assemblages and how this difference was affected by spatial separation of species within habitat types and specialization of species to three habitat types (reef flats, crests, and slopes). If spatial separation within habitat types and/or habitat specialization (i.e., underdispersion) occurs, fewer species are shared among assemblages than the random expectation. When the locations of individual coral colonies were randomized within and among habitat types, community similarity was 46â47% higher than that for observed assemblages at all three scales. We predicted that spatial separation of coral species within habitat types should increase with scale due to dispersal/extinction dynamics in this insular system, but that specialization of species to different habitat types should not change because habitat differences do not change with scale. However, neither habitat specialization nor spatial separation within habitat types differed among scales. At the two larger scales, each accounted for 22â24% of the difference in community similarity between observed and randomized assemblages. At the smallest scale (transectâsite), neither spatial separation within habitat types nor habitat specialization had significant effects on community similarity, probably due to the small size of transect samples. The results suggest that coral species can disperse among islands in an island group as easily as they can among sites on an island over time scales that are relevant to their establishment and persistence on reefs
Annotated Computer Output for Analyses of Unbalanced Data: SAS GLM
41 pages, 1 article*Annotated Computer Output for Analyses of Unbalanced Data: SAS GLM* (Searle, S. R.; Henderson, H. V.) 41 page
On Deriving the Inverse of a Sum of Matrices
21 pages, 1 article*On Deriving the Inverse of a Sum of Matrices* (Henderson, H. V.; Searle, S. R.) 21 page
Coarsening in a Driven Ising Chain with Conserved Dynamics
We study the low-temperature coarsening of an Ising chain subject to
spin-exchange dynamics and a small driving force. This dynamical system reduces
to a domain diffusion process, in which entire domains undergo nearest-neighbor
hopping, except for the shortest domains -- dimers -- which undergo long-range
hopping. This system is characterized by two independent length scales: the
average domain length L(t)~t^{1/2} and the average dimer hopping distance l(t)~
t^{1/4}. As a consequence of these two scales, the density C_k(t) of domains of
length k does not obey scaling. This breakdown of scaling also leads to the
density of short domains decaying as t^{-5/4}, instead of the t^{-3/2} decay
that would arise from pure domain diffusion.Comment: 7 pages, 9 figures, revtex 2-column forma
Renormalization Group Study of the A+B->0 Diffusion-Limited Reaction
The diffusion-limited reaction, with equal initial densities
, is studied by means of a field-theoretic renormalization
group formulation of the problem. For dimension an effective theory is
derived, from which the density and correlation functions can be calculated. We
find the density decays in time as a,b \sim C\sqrt{\D}(Dt)^{-d/4} for , with \D = n_0-C^\prime n_0^{d/2} + \dots, where is a universal
constant, and is non-universal. The calculation is extended to the
case of unequal diffusion constants , resulting in a new
amplitude but the same exponent. For a controlled calculation is not
possible, but a heuristic argument is presented that the results above give at
least the leading term in an expansion. Finally, we address
reaction zones formed in the steady-state by opposing currents of and
particles, and derive scaling properties.Comment: 17 pages, REVTeX, 13 compressed figures, included with epsf. Eq.
(6.12) corrected, and a moderate rewriting of the introduction. Accepted for
publication in J. Stat. Phy
TeV-scale electron Compton scattering in the Randall-Sundrum scenario
The spin-2 graviton excitations in the Randall-Sundrum gravity model provides
a t-channel contribution to electron Compton scattering which competes
favourably with the standard QED contributions. The phenomenological
implications of these contributions to the unpolarized and polarized
cross-sections are evaluated.Comment: 11 pages, 5 figure
Anomalous self-diffusion in the ferromagnetic Ising chain with Kawasaki dynamics
We investigate the motion of a tagged spin in a ferromagnetic Ising chain
evolving under Kawasaki dynamics. At equilibrium, the displacement is Gaussian,
with a variance growing as . The temperature dependence of the
prefactor is derived exactly. At low temperature, where the static
correlation length is large, the mean square displacement grows as
in the coarsening regime, i.e., as a finite fraction of the
mean square domain length. The case of totally asymmetric dynamics, where
(resp. ) spins move only to the right (resp. to the left), is also
considered. In the steady state, the displacement variance grows as . The temperature dependence of the prefactor is derived exactly,
using the Kardar-Parisi-Zhang theory. At low temperature, the displacement
variance grows as in the coarsening regime, again proportionally to
the mean square domain length.Comment: 22 pages, 8 figures. A few minor changes and update
Large magnetic anisotropy in Ferrihydrite nanoparticles synthesized from reverse micelles
Six-line ferrihydrite(FH) nanoparticles have been synthesized in the core of
reverse micelles, used as nanoreactors to obtain average particle sizes
2 to 4 nm. The blocking temperatures extracted from
magnetization data increased from to 20 K for increasing particle
size. Low-temperature \MOS measurements allowed to observe the onset of
differentiated contributions from particle core and surface as the particle
size increases. The magnetic properties measured in the liquid state of the
original emulsion showed that the \FH phase is not present in the liquid
precursor, but precipitates in the micelle cores after the free water is
freeze-dried. Systematic susceptibility \chi_{ac}(\emph{f},T) measurements
showed the dependence of the effective magnetic anisotropy energies
with particle volume, and yielded an effective anisotropy value of kJ/m.Comment: 8 pages, 10 figures. Nanotechnology, v17 (Nov. 2006) In pres
Production/maintenance cooperative scheduling using multi-agents and fuzzy logic
Within companies, production is directly concerned with the manufacturing schedule, but other services like sales, maintenance, purchasing or workforce management should also have an influence on this schedule. These services often have together a hierarchical relationship, i.e. the leading function (most of the time sales or production) generates constraints defining the framework within which the other functions have to satisfy their own objectives. We show how the multi-agent paradigm, often used in scheduling for its ability to distribute decision-making, can also provide a framework for making several functions cooperate in the schedule performance. Production and maintenance have been chosen as an example: having common resources (the machines), their activities are actually often conflicting. We show how to use a fuzzy logic in order to model the temporal degrees of freedom of the two functions, and show that this approach may allow one to obtain a schedule that provides a better compromise between the satisfaction of the respective objectives of the two functions
- âŠ