89 research outputs found

    Synthesis of auxetic structures using optimization of compliant mechanisms and a micropolar material model

    Get PDF
    Aim of this work is the synthesis of auxetic structures using a topology optimization approach for micropolar (or Cosserat) materials. A distributed compliant mechanism design problem is formulated, adopting a SIMP–like model to approximate the constitutive parameters of 2D micropolar bodies. The robustness of the proposed approach is assessed through numerical examples concerning the optimal design of structures that can expand perpendicularly to an applied tensile stress. The influence of the material characteristic length on the optimal layouts is investigated. Depending on the inherent flexural stiffness of micropolar solids, truss–like solutions typical of Cauchy solids are replaced by curved beam–like material distributions. No homogenization technique is implemented, since the proposed design approach applies to elements made of microstructured material with prescribed properties and not to the material itself

    Auxetic materials for MEMS: modeling, optimization and additive manufacturing

    Get PDF
    Auxetic materials are of interest because of enhanced material properties related to negative Poisson’s ratio, such as increased shear modulus, indentation resistance, fracture toughness, energy absorption, porosity/permeability variation with strain and synclastic curvature. In addition, the Poissons ratio does not depend on scale: deformation can take place at the nano- (molecular), [1], micro-[2], or even at the macro-level, [3]; the only requirement is the right combination of the geometry and the deformation mechanism. The most popular feature of auxetic structures is that it can expand in the direction perpendicular to an externally exerted tension. This property makes auxetic structures strongly appealing for MEMS applications (i.e. motion conversion and resonators) [4]. Here we present a full study of a re-entrant honeycomb structure which can be used in MEMS devices as motion conversion spring. The design of the proposed structure is obtained from a Matlab optimization procedure targeted to reach a Poisson’s ratio equal to -1. An additional nonlinear numerical simulation (see [5]) is done to verify the behavior of the structure under large deformations regime, which is the one required by the MEMS applications and then, a 3D-printed model (see [6]) of the optimized structure is obtained. Finally, a topology optimization is performed to obtain an auxetic structure that, in principle, can amplify the motion in the direction othogonal to the driving one. With this procedure there is no need to create an input structure from which the optimization procedure can start. Also for one of these optimized auxetic structures, an additional nonlinear numerical simulation is done

    3D auxetic single material periodic structure with ultra-wide tunable bandgap

    Get PDF
    The design and the combination of innovative metamaterials are attracting increasing interest in the scientific community because of their unique properties that go beyond the ones of natural materials. In particular, auxetic materials and phononic crystals are widely studied for their negative Poisson's ratio and their bandgap opening properties, respectively. In this work, auxeticity and phononic crystals bandgap properties are properly combined to obtain a single phase periodic structure with a tridimensional wide tunable bandgap. When an external tensile load is applied to the structure, the auxetic unit cells change their configurations by exploiting the negative Poisson's ratio and this results in the tuning, either hardening or softening, of the frequencies of the modes limiting the 3D bandgap. Moreover, the expansion of the unit cell in all the directions, due to the auxeticity property, guarantees a fully 3D bandgap tunability of the proposed structure. Numerical simulations and analytical models are proposed to prove the claimed properties. The first experimental evidence of the tunability of a wide 3D bandgap is then shown thanks to the fabrication of a prototype by means of additive manufacturing

    Integrated structure for a resonant micro-gyroscope and accelerometer

    Get PDF
    This paper presents the study of the mechanical behavior of a microstructure designed to detect acceleration and angular velocity simultaneously. The new resonant micro-sensor proposed, fabricated by the ThELMA© surface-micromachining technique, bases detection of two components of external acceleration (one in-plane component and one out-of plane component) and two components of angular velocity (roll and yaw) on the variation of frequency of several elements set in resonance. The device, despite its small dimensions, provides a differential decoupled detection of four external quantities thanks to the presence of four slender beams resonating in bending and four torsional resonators

    Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope

    Get PDF
    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes

    Plant Hsp90 Proteins Interact with B-Cells and Stimulate Their Proliferation

    Get PDF
    . incubation of spleen cells with rpHsp90 led to the expansion of CD19-bearing populations, suggesting a direct effect of these proteins on B lymphocytes. This effect was confirmed by immunofluorescence analysis, where a direct binding of rpHsp90 to B- but not to T-cells was observed in cells from BALB/c and C3H/HeN mice. Finally, we examined the involvement of Toll Like Receptor 4 (TLR4) molecules in the rpHsp90s induction of B-cell proliferation. Spleen cells from C3H/HeJ mice, which carry a point mutation in the cytoplasmic region of TLR4, responded poorly to prAtHsp90. However, the interaction between rpHsp90 and B-cells from C3H/HeJ mice was not altered, suggesting that the mutation on TLR4 would be affecting the signal cascade but not the rpHsp90-TLR4 receptor interaction.Our results show for the first time that spleen cell proliferation can be stimulated by a non-pathogen-derived Hsp90. Furthermore, our data provide a new example of a non-pathogen-derived ligand for TLRs

    Lifestyle Interventions and Prevention of Suicide

    Get PDF
    Over the past years, there has been a growing interest in the association between lifestyle psychosocial interventions, severe mental illness, and suicide risk. Patients with severe mental disorders have higher mortality rates, poor health states, and higher suicide risk compared to the general population. Lifestyle behaviors are amenable to change through the adoption of specific psychosocial interventions, and several approaches have been promoted. The current article provides a comprehensive review of the literature on lifestyle interventions, mental health, and suicide risk in the general population and in patients with psychiatric disorders. For this purpose, we investigated lifestyle behaviors and lifestyle interventions in three different age groups: adolescents, young adults, and the elderly. Several lifestyle behaviors including cigarette smoking, alcohol use, and sedentary lifestyle are associated with suicide risk in all age groups. In adolescents, growing attention has emerged on the association between suicide risk and internet addiction, cyberbullying and scholastic and family difficulties. In adults, psychiatric symptoms, substance and alcohol abuse, weight, and occupational difficulties seems to have a significant role in suicide risk. Finally, in the elderly, the presence of an organic disease and poor social support are associated with an increased risk of suicide attempt. Several factors may explain the association between lifestyle behaviors and suicide. First, many studies have reported that some lifestyle behaviors and its consequences (sedentary lifestyle, cigarette smoking underweight, obesity) are associated with cardiometabolic risk factors and with poor mental health. Second, several lifestyle behaviors may encourage social isolation, limiting the development of social networks, and remove individuals from social interactions; increasing their risk of mental health problems and suicide

    Building a neurocognitive profile of suicidal risk in severe mental disorders

    Get PDF
    Background Research on the influence of neurocognitive factors on suicide risk, regardless of the diagnosis, is inconsistent. Recently, suicide risk studies propose applying a trans-diagnostic framework in line with the launch of the Research Domain Criteria Cognitive Systems model. In the present study, we highlight the extent of cognitive impairment using a standardized battery in a psychiatric sample stratified for different degrees of suicidal risk. We also differentiate in our sample various neurocognitive profiles associated with different levels of risk. Materials and methods We divided a sample of 106 subjects into three groups stratified by suicide risk level: Suicide Attempt (SA), Suicidal Ideation (SI), Patient Controls (PC) and Healthy Controls (HC). We conducted a multivariate Analysis of Variance (MANOVA) for each cognitive domain measured through the standardized battery MATRICS Consensus Cognitive Battery (MCCB). Results We found that the group of patients performed worse than the group of healthy controls on most domains; social cognition was impaired in the suicide risk groups compared both to HC and PC. Patients in the SA group performed worse than those in the SI group. Conclusion Social cognition impairment may play a crucial role in suicidality among individuals diagnosed with serious mental illness as it is involved in both SI and SA; noteworthy, it is more compromised in the SA group fitting as a marker of risk severity

    Torsional microresonator in the nonlinear regime: experimental, numerical and analytical characterization

    Get PDF
    The dynamic behavior of a torsional microresonator is characterized analytically, numerically and experimentally both in the linear and nonlinear regime. Starting from the work presented in [1], here, the highly nonlinear regime is considered and the dynamic pull-in is experienced. Very good agreement between experimental data and numerical model is found also when the analytical methods usually employed to describe the nonlinear dynamic behavior of MEMS (multiple scale methods) are no more accurate. Finally, a numerical limit domain for the microresonator safe operation region in terms of bias and actuation voltages is computed and validated with experimental dat
    • …
    corecore