20,432 research outputs found

    Design of Ge/SiGe quantum-confined Stark effect electroabsorption heterostructures for CMOS compatible photonics

    Get PDF
    We describe a combined 6×6 k.p and one-band effective mass modelling tool to calculate absorption spectra in Ge–SiGe multiple quantum well (MQW) heterostructures. We find good agreement with experimentally measured absorption spectra of Ge–SiGe MQW structures described previously in the literature, proving its predictive capability, and the simulation tool is used for the analysis and design of electroabsorption modulators. We employ strain-engineering in Ge–SiGe MQW systems to design structures for modulation at 1310 nm and 1550 nm

    Quantum and Classical Dissipative Effects on Tunnelling in Quantum Hall Bilayers

    Full text link
    We discuss the interplay between transport and dissipation in quantum Hall bilayers. We show that quantum effects are relevant in the pseudospin picture of these systems, leading either to direct tunnelling currents or to quantum dissipative processes that damp oscillations around the ground state. These quantum effects have their origins in resonances of the classical spin system.Comment: 12 pages. Minor changes from v

    Hall effects in Bose-Einstein condensates in a rotating optical lattice

    Full text link
    Using the Kubo formalism, we demonstrate fractional quantum Hall features in a rotating Bose-Einstein condensate in a co-rotating two-dimensional optical lattice. The co-rotating lattice and trap potential allow for an effective magnetic field and compensation of the centrifugal potential. Fractional quantum Hall features are seen for the single-particle system and for few strongly interacting many-particle systems.Comment: 11 pages, 13 figure

    Hole Doping Dependence of the Coherence Length in La2xSrxCuO4La_{2-x}Sr_xCuO_4 Thin Films

    Full text link
    By measuring the field and temperature dependence of magnetization on systematically doped La2xSrxCuO4La_{2-x}Sr_xCuO_4 thin films, the critical current density jc(0)j_c(0) and the collective pinning energy Up(0)U_p(0) are determined in single vortex creep regime. Together with the published data of superfluid density, condensation energy and anisotropy, for the first time we derive the doping dependence of the coherence length or vortex core size in wide doping regime directly from the low temperature data. It is found that the coherence length drops in the underdoped region and increases in the overdoped side with the increase of hole concentration. The result in underdoped region clearly deviates from what expected by the pre-formed pairing model if one simply associates the pseudogap with the upper-critical field.Comment: 4 pages, 4 figure

    Liquid Chromatography Electron Capture Dissociation Tandem Mass Spectrometry (LC-ECD-MS/MS) versus Liquid Chromatography Collision-induced Dissociation Tandem Mass Spectrometry (LC-CID-MS/MS) for the Identification of Proteins

    Get PDF
    Electron capture dissociation (ECD) offers many advantages over the more traditional fragmentation techniques for the analysis of peptides and proteins, although the question remains: How suitable is ECD for incorporation within proteomic strategies for the identification of proteins? Here, we compare LC-ECD-MS/MS and LC-CID-MS/MS as techniques for the identification of proteins.Experiments were performed on a hybrid linear ion trap–Fourier transform ion cyclotron resonance mass spectrometer. Replicate analyses of a six-protein (bovine serum albumin, apo-transferrin,lysozyme, cytochrome c, alcohol dehydrogenase, and β-galactosidase) tryptic digest were performed and the results analyzed on the basis of overall protein sequence coverage and sequence tag lengths within individual peptides. The results show that although protein coverage was lower for LC-ECDMS/MS than for LC-CID-MS/MS, LC-ECD-MS/MS resulted in longer peptide sequence tags,providing greater confidence in protein assignment

    Size of Fireballs Created in High Energy Lead-Lead Collisions as Inferred from Coulomb Distortions of Pion Spectra

    Full text link
    We compute the Coulomb effects produced by an expanding, highly charged fireball on the momentum distribution of pions. We compare our results to data on Au+Au at 11.6 A GeV from E866 at the BNL AGS and to data on Pb+Pb at 158 A GeV from NA44 at the CERN SPS. We conclude that the distortion of the spectra at low transverse momentum and mid-rapidity can be explained in both experiments by the effect of the large amount of participating charge in the central rapidity region. By adjusting the fireball expansion velocity to match the average transverse momentum of protons, we find a best fit when the fireball radius is about 10 fm, as determined by the moment when the pions undergo their last scattering. This value is common to both the AGS and CERN experiments.Comment: Enlarged discussion, new references added, includes new analysis of pi-/pi+ at AGS energies. 12 pages 5 figures, uses LaTex and epsfi

    A scattering rate approach to the understanding of absorption line broadening in near-infrared AlGaN/GaN quantum wells

    No full text
    There has been much interest in the advancement of III-Nitride growth technology to fabricate AlGaN/GaN heterostructures for intersubband transitions (ISBTs). The large conduction band offset in these structures (up to 2 eV) allows transition energies in the near- to the far-infrared region, which have applications from telecommunications, such as in all-optical switches, to infra-red detectors for sensing and imaging. To date, ISBT electroluminescence has been elusive and absorption measurements remain an important method to verify band structure calculations. The growth quality can be inferred from the absorption spectrum, which will have line broadening with contributions that are both inhomogeneous (large-scale interface roughness, and non-parabolicity) and homogeneous (electron scattering related lifetime broadening). In the present work we calculated the contributions of various homogeneous broadening mechanisms (electron interaction with longitudinal-optical (LO) phonons, acoustic phonons, impurities and alloy disorder) to the full linewidth, and also the contribution of band non-parabolicity, which contributes to the inhomogeneous broadening. Calculations are then compared to the measured absorption spectra of several samples

    A Universal Intrinsic Scale of Hole Concentration for High-Tc Cuprates

    Get PDF
    We have measured thermoelectric power (TEP) as a function of hole concentration per CuO2 layer, Ppl, in Y1-xCaxBa2Cu3O6 (Ppl = x/2) with no oxygen in the Cu-O chain layer. The room-temperature TEP as a function of Ppl, S290(Ppl), of Y1-xCaxBa2Cu3O6 behaves identically to that of La2-zSrzCuO4 (Ppl = z). We argue that S290(Ppl) represents a measure of the intrinsic equilibrium electronic states of doped holes and, therefore, can be used as a common scale for the carrier concentrations of layered cuprates. We shows that the Ppl determined by this new universal scale is consistent with both hole concentration microscopically determined by NQR and the hole concentration macroscopically determined by the Cu valency. We find two characteristic scaling temperatures, TS* and TS2*, in the TEP vs. temperature curves that change systematically with doping. Based on the universal scale, we uncover a universal phase diagram in which almost all the experimentally determined pseudogap temperatures as a function of Ppl fall on two common curves; upper pseudogap temperature defined by the TS* versus Ppl curve and lower pseudogap temperature defined by the TS2* versus Ppl curve. We find that while pseudogaps are intrinsic properties of doped holes of a single CuO2 layer for all high-Tc cuprates, Tc depends on the number of layers, therefore the inter-layer coupling, in each individual system.Comment: 11 pages, 9 figures, accepted for publication in Physical Review
    corecore